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a b s t r a c t 

Activation functions play important roles in deep convolutional neural networks. This work focuses on 

learning activation functions via combining basic activation functions in a data-driven way. We explore 

three strategies to learn the activation functions, and allow the activation operation to be adaptive to 

inputs. We firstly explore two strategies to linearly and nonlinearly combine basic activation functions, 

respectively. Then we further investigate a strategy that basic activation functions are combined in a 

way of a hierarchical integration. Experiments demonstrate that the proposed activation functions lead to 

better performances than ReLU and its variants on benchmarks with various scales. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

These years have witnessed the remarkable development of 

CNNs in various computer vision applications [1] , such as image 

classification [2,3] , image retrieval [4] , object detection [5] and 

tracking [6,7] . Non-saturated activation functions rather than sat- 

urated versions play key roles in current deep models, which have 

promoted the success of deep models. Compared with saturated 

versions, they are beneficial to deep model learning. On the one 

hand, they help to tackle the problem that gradients will tend to 

vanish when using saturated versions. On the other hand, they 

contribute to accelerating model learning. 

Considerable attention has been paid to the research of non- 

saturated activation functions during the past years. The rectified 

linear unit (ReLU) [8] has been generally applied in these works 

[2,9–11] . This is a piecewise linear function whose positive part 

is an identity function and negative part is set to zero. Compared 

with ReLU, the leaky ReLU (LReLU) [12] assigns a relative smaller 

and predefined slope to the negative part. Furthermore, the ran- 

domized ReLU (RReLU) [13] samples the slope from a uniform dis- 

tribution during training and sets it to the mean of the distribu- 
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tion during test, which helps to decrease the overfitting via this 

randomized strategy. Through generalizing LReLU, the parametric 

ReLU (PReLU) [14] allows the slope to be learned from data and 

improves the representation ability. In contrast with the linearity 

of negative parts in above activation functions, the exponential lin- 

ear unit (ELU) [15] exponentially reduces the slope from a prede- 

fined and fixed threshold to zero, and is beneficial to speed up 

model learning. Inspired by PReLU, we also propose a parametric 

variant of ELU called parametric ELU (PELU). 

In addition, more complex forms of activation functions have 

been proposed to improve the ability of learning non-linear trans- 

formation. Considering the objective of leveraging the dropout 

model averaging technique in models design, the maxout unit 

(Maxout) [16] computes the maximum of linear units in group to 

approximate convex activation functions. With keeping the desir- 

able property of the maxout unit, the probabilistic Maxout (Prob- 

Maxout) [17] uses a probabilistic sampling procedure to select the 

maximum of linear units to take full advantage of the linear sub- 

space composed of these linear units. By learning basic rectified 

linear units, the adaptive piecewise linear activation (APL) [18] can 

approximate both convex and nonconvex functions composed of a 

set of generalized hinge-shared linear units. 

In this paper we are interested in ReLU and its variants, namely 

the rectified unit family. According to different negative parts of 

these activation functions, we categorize them into three types: 

zero-type, linear-type and exponential-type. Among them, ReLU 
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Fig. 1. Activation functions of middle-level nodes in hierarchical activation with dif- 

ferent learned parameters. These activation functions have various forms. Among 

them, (a), (b) and (c), (d) are convex and non-convex functions, respectively. All 

activation functions share the positive parts indicated by the black line. 

belong to the first type, LReLU and PReLU belong to the second 

type, and ELU and PELU belong to the third type. The zero-type 

can be viewed as a special form of both the linear-type and the 

exponential-type. Their detailed relationship will be pursued fur- 

ther in Section 2 . The rectified unit family has been widely applied 

in the recent popular deep CNNs [11,14,15,19,20] . When choosing 

activation functions for a specific CNN, activation functions in all 

activation layers in this CNN are confined to only one of the above 

types. Since their functional forms are designed as convex func- 

tions, it has restricted the representation ability of learning non- 

linear transformation to some degree. By utilizing this rectified 

unit family, we aim to design an activation function to improve 

the ability of learning non-linear transformation and be adaptive 

to the inputs. We expect the designed activation function to have 

more flexible forms which can be determined in a data-driven way. 

First, we adopt two strategies to combine basic activation func- 

tions. The one is denoted as mixed activation, in which the ac- 

tivation operation is learned by linearly combining basic activa- 

tion functions. In order to make the learned activation operation 

be adapted to the specific inputs, the other is gated activation, 

in which the activation operation is learned by nonlinearly com- 

bining basic activation functions. For the sake of further improv- 

ing the ability of learning non-linear transformation, we extend 

the above structures and propose the hierarchical activation as the 

third strategy. The combination of basic activation functions will 

be learned and organized as a unit in a more complex hierarchical 

structure. The goal of hierarchical activation is to allow basic ac- 

tivation functions being combined to be learned directly from the 

data and be adapted to the specific inputs. For this purpose, the 

winner-take-all mechanism is adopted to enhance the nonlinear- 

ity of the activation operation. Specifically, we design a three-level 

hierarchical structure. The low-level nodes are associated with ba- 

sic activation operations. Each middle-level node is associated with 

the combination of a pair of low-level nodes and the high-level 

node corresponds to the entire output generated through integrat- 

ing all of middle-level nodes. As a result, the hierarchical activation 

can be considered as an integrated scheme having the adaptabil- 

ity to the inputs. Fig. 1 shows various function forms of middle- 

level nodes in hierarchical activation and Fig. 5 illustrates the basic 

structure of hierarchical activation. More details will be described 

in Section 3 . To verify the effectiveness of the proposed strategies, 

we perform the validation experiments with multiple deep CNNs 

on multiple datasets. 

The most relevant literature of this work is generalizing pooling 

functions (GPF) [21] . GPF explores various strategies (mixed, gated, 

and tree) to learn pooling operations in CNNs. Compared with GPF, 

this work focuses on learning activation operations. In addition, we 

list the main differences between these two works as follows. The 

tree strategy in GPF adopts a complete binary tree to organize its 

structure. It simply extends the gated strategy and implicitly in- 

creases the depth of the whole network. A deeper network is actu- 

ally more difficult to optimize. Different from GPF, the hierarchical 

strategy in this work uses the forest composed of multiple binary 

trees of depth 1 to organize its structure. It considers the charac- 

teristics of activation functions, and introduces the winner-take-all 

mechanism [22,23] which is beneficial for improving the nonlin- 

earity of activation functions. Meanwhile it does not implicitly in- 

crease the depth of the whole network. 

The main contribution of this work includes: we propose the 

mixed activation and the gated activation to linearly and nonlin- 

early combine basic activation functions in a data-driven way, re- 

spectively. As an extension of gated activation, hierarchical activa- 

tion further improves the ability of learning non-linear transfor- 

mation, and is equipped with the ability of being adaptive to the 

inputs. In multiple deep CNNs investigated, such as NIN [24] , All- 

CNN [25] , ELUNet [15] , replacing standard activation functions with 

the proposed activation functions achieves a performance boost on 

benchmarks with various scales including MNIST [26] , CIFAR [27] , 

and ImageNet [28] . 

2. Rectified unit family 

In the rectified unit family the zero-type can be viewed as a 

special form of both the linear-type and exponential-type. Hence, 

we just need to discuss two types of activation functions: linear- 

type and exponential-type. Formally, we define LReLU and ELU de- 

fined as: 

f lrelu (x ) = 

{
x if x > 0 

αx if x ≤ 0 , 
f elu (x ) = 

{
x if x > 0 

β( exp (x ) − 1) if x ≤ 0 

(1) 

where x is the input of activation functions f lrelu ( · ) and f elu ( · ). 

α and β are weights controlling the slope of the negative part. 

Both α and β are predefined hyper-parameters. These activation 

functions belong to the rectified unit family and their relationship 

can be observed from the configuration of α and β . When α = 0 

and β = 0 , both LReLU and ELU become ReLU. If α and β become 

learnable parameters, then LReLU and ELU will become PReLU and 

PELU respectively. For PReLU and PELU, we simply denote their for- 

mulas by f prelu ( · ) and f pelu ( · ). We can compute the error signal to 

be propagated back to the previous layer and the gradients with 

respect to the parameters α and β: 

∂ f prelu (x ) 

x 
= 

{
1 if x > 0 

α if x ≤ 0 , 

∂ f prelu (x ) 

α
= 

{
0 if x > 0 

x if x ≤ 0 

(2) 

∂ f pelu 

x 
= 

{
x if x > 0 

β exp (x ) if x ≤ 0 , 

∂ f pelu (x ) 

β
= 

{
0 if x > 0 

exp (x ) − 1 if x ≤ 0 

(3) 

3. Adaptive activation functions 

Convolutional neural networks are commonly structured as di- 

rected acyclic graphs whose vertexes are convolutional layers, ac- 

tivation layers and pooling layers. Our aim is to introduce learning 

and adaptation into the activation operation. We begin with acti- 

vation functions with predefined parameters (LReLU and ELU), and 
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