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a b s t r a c t 

In this paper, we propose a new approach, called the matched shrunken subspace detector (MSSD), to 

target detection from hyperspectral images. The MSSD is developed by shrinking the abundance vectors of 

the target and background subspaces in the hypothesis models of the matched subspace detector (MSD), 

a popular subspace-based approach to target detection. The shrinkage is achieved by introducing simple 

l 2 -norm regularisation (also known as ridge regression or Tikhonov regularisation). We develop two types 

of MSSD, one with isotropic shrinkage and termed MSSD-i and the other with anisotropic shrinkage and 

termed MSSD-a. For these two new methods, we provide both the frequentist and Bayesian derivations. 

Experiments on a real hyperspectral imaging dataset called Hymap demonstrate that the proposed MSSD 

methods can outperform the original MSD for hyperspectral target detection. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Target detection or anomaly detection is an important task of 

hyperspectral image (HSI) analysis [1–6] . To target detection, the 

matched subspace detector (MSD) [7,8] is one of the most widely- 

used subspace-based approaches, underlying which is the idea of 

the linear mixing model (LMM) [9] . 

The LMM [9] is a typical approach to unmixing a mixed pixel. 

Suppose there are p spectral bands and thus a mixed pixel x is rep- 

resented by a p -dimensional vector/spectrum. Let us assume there 

are K types of materials potentially constituting a pixel; these com- 

ponent materials are often referred to as endmembers, the spectra 

of which can be represented by m 1 , . . . , m K , where each m k is a p - 

dimensional vector. Then the LMM of pixel x models the spectral 

signature of x as a linear combination of endmembers m 1 , . . . , m K 

with corresponding abundance fractions a 1 , . . . , a K . More specifi- 

cally, x = [ x 1 , . . . , x p ] 
T 

can be expressed as an additive mixture of 

K endmembers m k plus noise: 

x = �K 
k =1 a k m k + n = Ma + n , (1) 
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where M is a p × K matrix whose columns are the K endmember 

spectra m k = [ m k, 1 , . . . , m k,p ] 
T 

for k = 1 , . . . , K, respectively; 

a = [ a 1 , . . . , a K ] 
T 

denotes the abundance vector; and 

n = [ n 1 , . . . , n p ] 
T 

represents the additive Gaussian white noise, 

i.e. n ∼ N (0 , σ 2 I ) , where I is a p × p identity matrix. In classical 

unmixing problems, the abundances a 1 , . . . , a K need to satisfy two 

conditions, which are the non-negative constraint and the sum-to 

one constraint, i.e. a k ≥ 0 and �K 
k =1 

a k = 1 , respectively. However, in 

target detection problems, as explained in [9] , both constraints will 

complicate the solution; as usually is the case, we can relax both 

constraints in target detection. 

To achieve an HSI target detection, the MSD determines 

whether a test pixel can be represented by a linear combination 

of target spectral signatures and background spectral signatures. To 

this end, two subspaces are constructed: the target subspace and 

the background subspace. In each subspace, the MSD assumes that 

each basis vector represents an endmember, which is in line with 

the assumption of the LMM for HSI analysis. 

To construct the two subspaces, the MSD usually acquires their 

basis vectors from the eigendecomposition of covariance matri- 

ces of the training samples [1,10] . The eigenvectors with dominant 

eigenvalues, termed leading eigenvectors, are selected as bases to 

span the subspaces, while those with small eigenvalues are dis- 

carded. This is essentially a scheme of basis selection, or say 0/1 

weighting, which extracts a subspace out of the full eigenspace. 

http://dx.doi.org/10.1016/j.neucom.2017.06.068 

0925-2312/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: Z. Wang, J.-H. Xue, Matched shrunken subspace detectors for hyperspectral target detection, Neurocomputing 

(2017), http://dx.doi.org/10.1016/j.neucom.2017.0 6.0 68 

http://dx.doi.org/10.1016/j.neucom.2017.06.068
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:ziyu.wang.12@ucl.ac.uk
mailto:jinghao.xue@ucl.ac.uk
http://dx.doi.org/10.1016/j.neucom.2017.06.068
http://dx.doi.org/10.1016/j.neucom.2017.06.068


2 Z. Wang, J.-H. Xue / Neurocomputing 0 0 0 (2017) 1–11 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; July 11, 2017;10:30 ] 

In fact, the 0/1 weighting scheme of the MSD implicitly im- 

poses a sparseness constraint or say an l 0 -norm regularisation 

while building its LMM. However, it is well known that such a 

“hard” selection may exhibit high variance on the selected lead- 

ing eigenvectors. Alternatively, explicit sparse representation (SR)- 

based techniques have also been developed in hyperspectral target 

detection [11–13] , with selection of a small number of atoms from 

a large dictionary. That is, these SR methods model a test HSI pixel 

as a linear combination of only few atoms from an over-complete 

dictionary; atoms in the dictionary are usually also samples, hence, 

these SR methods can be viewed as being developed in the origi- 

nal sample space. Regarding the construction of the dictionary, [11] 

propose to construct a background spectra dictionary and a target 

spectra dictionary separately; on the other hand, [12,13] propose to 

construct an over-complete dictionary including both background 

spectra and target spectra. 

To avoid the problem of high variance from such a “hard” se- 

lection, shrinkage methods [14] have been developed in statisti- 

cal learning, mainly due to such a problem in regression analy- 

sis. Among the shrinkage methods, the most popular one is called 

ridge regression, also known as Tikhonov regularisation [15] in 

other disciplines; it shrinks the regression coefficients through im- 

posing an l 2 -norm constraint. In this way, the estimates of the co- 

efficients become more stable and therefore can improve the per- 

formance of regression. 

The l 2 -norm regularisation has been investigated for analysing 

hyperspectral imagery [4,16–20] . For the HSI classification, [16] 

and [17] assume that a test pixel can be collaboratively represented 

by raw spectral signatures. It is shown that l 2 -norm constraints can 

actually improve the classification, instead of the “competitive” na- 

ture imposed by sparseness constraints (as l 1 -norm or l 0 -norm reg- 

ularisation). For the HSI target detection, [4,18–20] add a scaled 

identity matrix to the background clutter covariance matrix be- 

fore inverting it, in order to avoid an ill-conditioned problem. It 

is worth noting that these l 2 -norm regularisation methods are de- 

veloped in the original sample space, rather than in the eigenspace 

as this work. 

In this paper, focusing on the popular MSD, we propose a 

new approach, called the matched shrunken subspace detector 

(MSSD), to target detection from hyperspectral images. Our MSSD 

is developed by shrinking the abundance vectors of the target 

and background subspaces in the hypothesis models of the MSD. 

The shrinkage is simply achieved by introducing l 2 -norm regular- 

isation into the MSD. We develop two types of the MSSD, one 

with isotropic shrinkage (and termed MSSD-i) and the other with 

anisotropic shrinkage (and termed MSSD-a). For these two new 

methods, we provide both the frequentist and Bayesian derivations. 

Experiments on a real hyperspectral imaging dataset called Hymap 

demonstrate that the proposed MSSD-i and MSSD-a can outper- 

form the original MSD for hyperspectral target detection. 

The main contributions of this paper are two-fold. (1) Through 

introducing the l 2 -norm regularisation terms into the MSD, we 

shrink the abundance vectors so that the variance in each basis 

direction of the subspaces is also reduced, leading to a more sta- 

ble estimation. (2) We derive the proposed MSSD-i and MSSD-a 

from both the frequentist and Bayesian perspectives, with the lat- 

ter showing how the proposed methods preserve Gaussian prior 

distributions of the abundance vectors, instead of the uniform prior 

distribution that is implicitly imposed by the original MSD. 

The rest of this paper is organised as follows. Section 2 reviews 

the original MSD. In Sections 3.1 and 3.2 , detailed formulation of 

the two proposed methods, MSSD-i and MSSD-a, are introduced. 

Then the two proposed methods are derived from the Bayesian 

perspective and shown in Section 4 . The links of MSD, MSSD-i and 

MSSD-a are discussed in Section 5 . Section 6 presents the experi- 

mental results, with the whole work concluded in Section 7 . 

2. Matched subspace detector (MSD) 

2.1. Overview of the binary hypothesis testing model 

From a statistical perspective, target detection is typically de- 

rived from a binary hypothesis testing problem [3] . It is based on 

the likelihood ratio of the conditional probability density functions 

(pdfs) of two competing hypotheses, given that the spectral signa- 

ture of an HSI pixel x is treated as a continuous random vector: 

H 0 : x is a background pixel , 

H 1 : x is a target pixel , 

⇒ D (x ) = 

f x | H 1 (x ) 

f x | H 0 (x ) 

H 1 
≷ 

H 0 

ν, 

(2) 

where f x | H 0 (x ) and f x | H 1 (x ) are two conditional pdfs of x under 

the null hypothesis H 0 and the alternative hypothesis H 1 , respec- 

tively; ν is the detection threshold; and D ( x ) is an output detector. 

In reality, the conditional pdfs are usually not available and are ex- 

pressed parametrically. Hence, the generalised likelihood ratio test 

(GLRT) [21] is commonly used to replace the unknown parameters 

by their maximum likelihood estimates (MLEs): 

D GLRT (x ) = 

f x | H 1 (x ; ˆ ω 1 ) 

f x | H 0 (x ; ˆ ω 0 ) 

H 1 
≷ 

H 0 

ν

= 

max ω 1 { f x | H 1 (x ;ω 1 ) } 
max ω 0 { f x | H 0 (x ;ω 0 ) } 

H 1 
≷ 

H 0 

ν, 

(3) 

where ω 0 and ω 1 are unknown parameters of pdf f x | H 0 (x ;ω 0 ) and 

pdf f x | H 1 (x ;ω 1 ) , respectively; and ˆ ω 0 and ˆ ω 1 are their MLEs. In 

this paper, “^ ” denotes the estimates of unknown parameters. 

2.2. Formulation of the matched subspace detector (MSD) 

Following the idea of LMM (1) [9] , the MSD models a test pixel 

by a linear combination of target spectral endmembers and back- 

ground spectral endmembers, and these endmembers are repre- 

sented by the basis vectors of the target subspace and the back- 

ground subspace, respectively. 

That is, derived from the binary hypothesis model (2) , the MSD 

model [7] is constructed as 

H 0 : x = B β + n 0 , x is a background pixel , 

H 1 : x = T γ + B β + n 1 , x is a target pixel , 
(4) 

where T = [ t 1 , . . . , t r t ] is a p × r t matrix representing the target 

subspace, and B = [ b 1 , . . . , b r b 
] is a p × r b matrix representing the 

background subspace; T is derived from a training target ma- 

trix M T ∈ R 

p×N t whose columns are the N t target spectra, and B 

is derived from a training background matrix M B ∈ R 

p×N b whose 

columns are the N b background spectra; γ and β are the corre- 

sponding abundance vectors of the subspaces T and B , respectively; 

and n 0 and n 1 are p -dimensional vectors of Gaussian white noise: 

n 0 ∼ N (0 , σ 2 
0 

I ) and n 1 ∼ N (0 , σ 2 
1 

I ) . 

In general, a set of orthogonal basis vectors that spans the cor- 

responding subspace are used as the column vectors of T or B . In 

common practice, the leading eigenvectors of the target covariance 

matrix C T and those of the background covariance matrix C B are 

used as the columns of T and B , respectively, as with [1,10] . In other 

words, when the test pixel x is a target pixel, it is decomposed 

into two components by linear combinations of the bases of B and 

T , denoted by model H 1 . When x is a background pixel, it is ade- 

quately described by model H 0 , which is a reduced order model. 

Let V be the concatenated matrix of T and B , i.e. 

V = [ T B ] = [ t 1 , . . . , t r t , b 1 , . . . , b r b 
] , then the abundance vectors 

γ and β of model H 1 can be concatenated into a single vector, 
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