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a b s t r a c t

The biologically inspired model for object recognition, Hierarchical Model and X (HMAX), has attracted
considerable attention in recent years. HMAX is robust (i.e., shift- and scale-invariant), but it is sensitive
to rotational deformation, which greatly limits its performance in object recognition. The main reason for
this is that HMAX lacks an appropriate directional module against rotational deformation, thereby often
leading to mismatch. To address this issue, we propose a novel patch-matching method for HMAX called
Dominant Orientation Patch Matching (DOPM), which calculates the dominant orientation of the
selected patches and implements patch-to-patch matching. In contrast to patch matching with the whole
target image (second layer C1) in the conventional HMAX model, which involves huge amounts of
redundant information in the feature representation, the DOPM-based HMAX model (D-HMAX) quan-
tizes the C1 layer to patch sets with better distinctiveness, then realizes patch-to-patch matching based
on the dominant orientation. To show the effectiveness of D-HMAX, we apply it to object categorization
and conduct experiments on the CalTech101, CalTech05, GRAZ01, and GRAZ02 databases. Our experi-
mental results demonstrate that D-HMAX outperforms conventional HMAX and is comparable to
existing architectures that have a similar framework.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Object recognition has been widely used in pedestrian detec-
tion, visual navigation for robots, and video surveillance [1–3]. In
practical applications, the difficulties that arise in object recogni-
tion involve two conflicting requirements. On one hand, the
recognition system needs to be specific and selective for various
objects, which may generally look quite similar and share certain
characteristic features (e.g., telling apart twins). On the other hand,
the recognition needs to be tolerant or invariant to different
appearance-altering transformations of an object (e.g., recognizing
a person under disguise). Object variability in terms of rotation,
illumination, and scale changes, especially in the case of cluttered
backgrounds, seriously disrupts recognition [4,5]. For example,
various pedestrian postures (e.g., running, squatting, standing, or
stooping) in a cluttered environment make accurate recognition a
challenging task. Many approaches have recently been proposed to
address this issue.

Traditional appearance- and contour-based methods mainly
use low-level visual features, such as textures, edges, and colors
[6,7]. While these methods generally take these features into
account, they do not selectively address discriminative features.
They are sensitive to scale, shift, and rotation deformations and
variations in illumination. Local feature-based methods combine
local descriptors and keypoint detectors with spatial information.
Representative local feature methods have been proposed, such as
scale-invariant feature transform (SIFT) [5], speeded-up robust
features (SURF) [8], gradient location and orientation histogram
(GLOH) [9], and histogram of gradients (HOG) [10]. These methods
are effective in terms of describing locally discriminative features,
but they lack oriented local information. Bag-of-features [11] is
effective for resolving this issue; however, the amount of struc-
tural information still falls short.

In recent years, significant advances have been made in the
understanding of brain cognition in the biological vision field. The
ventral pathway in the primate visual cortex, from the primary
visual area V1 to the inferior temporal cortex IT, is thought to
mediate object recognition, which is commonly called the “what
pathway” [12]. Within the early visual areas along the pathway,
such as V1, neurons tend to respond well to oriented bars or edges
[13]. Neurons in the intermediate visual areas, such as V2 and V4,
are no longer tuned to oriented bars only, but to other forms and
shapes of intermediate complexity [14–17]. Finally, in high-visual
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areas, such as the inferior temporal cortex (IT), neurons are
responsive to complex shapes, such as the image of a face or a
hand [18–21]. These discoveries have provided biological support
for early-stage psychophysical theories. Riesenhuber and Poggio
developed these theories and presented an initial computational
model of object recognition, called Hierarchical Model and X
(HMAX), which attempts to model the recognition mechanism of
the cortex [22]. Serre et al. improved the original HMAX sig-
nificantly on a variety of large-scale, real-world object recognition
databases. The extension of the original model is named the
standard HMAX model [23], which demonstrates that the visual
cognitive model efficiently enhances the performance of object
recognition.

HMAX is a biologically inspired feature descriptor that focuses
on feature invariance and selectivity. Although HMAX is robust to
scale and position changes, the poor invariance to rotation has not
been significantly improved [23]. The improvement of the rotation
invariance of local features is a challenging issue, and some valid
approaches have been proposed recently [24–26]. To improve
robustness to rotation, HMAX simply introduces rotated versions of
training images, which alone is very inadequate. The feature
representation in the S2 layer of HMAX directly influences the
overall performance of HMAX. In the conventional HMAX, the S2
layer measures the matching between a stored patch and the pre-
vious C1 layer at every position and scale. However, the matching
does not take the directional information into account; in addition,
the matching between the patch and the whole C1 layer is likely to
bring in redundant information, which is prone to yielding poor
feature discrimination. Due to these drawbacks, the overall perfor-
mance of HMAX is limited. To solve this issue, we propose a new
patch-matching method called Dominant Orientation Patch
Matching (DOPM) and employ the DOPM in the HMAX structure for
DOPM-based HMAX (D-HMAX). In contrast to the conventional
HMAX, which directly measures the matching between a stored
patch and the whole C1 layer, D-HMAX achieves a patch-to-patch
matching based on the dominant orientations. We test the object
categorization of D-HMAX and evaluate its accuracy in the Cal-
Tech101, CalTech5, GRAZ01, and GRAZ02 datasets.

The rest of this paper is organized as follows. In Section 2, we
briefly review the standard HMAX model. In Section 3, we ela-
borate on the DOPM and DHMAX model. In Section 4, we present
experimental results based on four public datasets. Finally, in
Section 5, we give our conclusions.

2. HMAX review

The standard HMAX [23] is a general framework for the
recognition of complex visual scenes, which is motivated by
biology: it is a hierarchical structure that closely follows the
mechanism of visual cortex and builds an increasingly complex
and invariant feature representation by alternating between a
maximum pooling and a patch matching operation. The HMAX is
with four layers: S1, C1, S2, and C2, as shown in Fig. 1. We briefly
describe the operations of each layer of the HMAX model as
follows.

S1 layers : The units in the S1 layers correspond to simple cells
in V1. The S1 units take the form of Gabor functions, which have
been described as a model of cortical simple-cell RFs [27]. Gabor
functions are defined as

Gðx; yÞ ¼ exp �xo2þγ2yo2

2σ2

� �
� cos 2pxo

λ

� �
;

s:t xo ¼ x cos θþy sin θ and yo ¼ �x sin θþy cos θ; ð1Þ
where θ represents the orientation, λ is the wavelength, σ is the
standard deviation, and γ indicates the spatial aspect ratio.

Given an input image, the S1 layer with orientation θ and
standard deviation σ is calculated by

S1σ;θ ¼ Gσ;θ � I ;j
�� ð2Þ

where * denotes the convolution operation, I is the input image,
and Gσ;θ is the Gabor function with specific parameters.

C1 layers : The C1 layers describe the complex cells in V1. The
layers are the dimension reduction of the S1 layers obtained by
selecting the maximum over local spatial neighborhoods. The
maximum pooling operation over local neighborhoods increases
invariance (providing some robustness to shift and scale
transformations).

S2 layers : The S2 layers describe the similarity between the C1
layers and stored patches in a Gaussian-like manner using Eucli-
dean distance. The responses of the corresponding S2 layers are
calculated by

S2¼ expð�βJC1ðj; kÞ � Pi J2Þ; ð3Þ
where β is the sharpness of the exponential function, C1ðj; kÞ
denotes the afferent C1 layer with scale j and orientation k, and Pi

is a sampled patch from the previous C1 layers.
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Fig. 1. HMAX structure overview.
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