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a b s t r a c t

In this paper, the filtering problem is investigated for a class of discrete systems with linear equality constraints.
The system under consideration is subject to both noises and time-varying constrained conditions. Attention is
focused on the design of a new reduced-order filter under a mild assumption such that the estimation per-
formance of the proposed filter outperforms those of the traditional filters. By using the reorganized constraint
information, the original system is transformed to a reduced-order system. A new recursive state estimator is
developed, which is proved to have higher estimation precision than several existing filters. Subsequently,
further analysis shows that the constrained Kalman predictor is a special case of the proposed filter. Finally, a
numerical example is employed to demonstrate the effectiveness of our approach.

Crown Copyright & 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, the filtering problems have been
extensively investigated and successfully applied in many branches
of engineering [1,12,13,15–17,36,39,40]. In the real world, a lot of
physical systems are subject to constraints, which can arise from
different reasons such as the basic laws of physics, geometry con-
sideration of a system, and the mathematical description of the state
vector [2,7,21,31–34]. In general, constraints are usually formulated
as a series of mathematical expressions, which contain valuable prior
information about the system state and should be taken into account
in the system analysis or state estimation. It is well known that
system states affected by linear equality constraints are often
encountered in engineering applications such as target tracking and
navigation [37,38], manufacturing production [22], engine health
estimation [30], estimation of structural model [3,20], multi-sensor
information fusion [41] and vehicle motion [27]. Therefore, in the
past decade, many effective filtering methods have been proposed to
apply these equality constraints within the Kalman filter framework;
see, e.g., [11,29,35,42,43] and the references therein.

Among a variety of existing methods for the systems with equality
constraints, the pseudo-observation method has been implemented in
[41] by treating constraint equations as additional measurement

equations. Thus, the state estimation problem has been converted into
a regular filtering problemwith two types of measurements. However,
this methodmay lead to unstable filtering results since the augmented
measurement noises have singular covariance. The results in [41] have
been extended in [11] to the case of the nonlinear systems. The pro-
jection method is another popular technique to deal with the con-
strained problems [29,35], which has been presented by projecting the
state estimation obtained from Kalman filtering onto the subspace
spanned by the constraints. Unfortunately, this method bears no
relation to the true constrained optimum since the projection process
is only a correlation that forces the unconstrained estimation onto the
constraint surface. Moreover, the null space filtering method has been
presented in [14], where the system state is assumed to be a degen-
erate random vector which contains deterministic part and stochastic
part. However, the precision of the algorithm in [14] is not high since
some useful information has been lost in the estimation process.

To obtain more accurate estimation, some assumptions have been
made and the constrained models have been reformulated in
[22,42,43], where the filters for the new systems have been designed.
For example, in [22], the system noises and measurement noises have
been assumed to satisfy some constraint equations and a constrained
Kalman predictor has been constructed, which has better performance
than the projection filter and the unconstrained filter. A similar
scheme has also been adopted in [42,43], where a new projection
system has been derived by using an oblique projector on the null
space of the constraint matrix and the covariance of system noise is
assumed to be singular. This algorithm is more efficient than the
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pseudo-observation method. Unfortunately, the application scopes of
the two methods mentioned above are narrow since these assump-
tions are too strict to be satisfied. Therefore, the purpose of this paper
is to further study the filtering method for the constrained systems
and design a high precision filter with relaxed assumptions.

In this paper, our aim is to address the state estimation problem
for the systems with linear equality constraints and propose a new
constrained filtering method. By using the least squares estimator and
Kalman filter, a reduced-order estimator is first designed, and the
performances of different filters are then compared. A simulation
example is provided to show the effectiveness of the proposed state
estimate scheme. The main contributions of this paper can be out-
lined as follows: (1) A novel reduced-order is proposed in order to
solve the state estimation problem of the constrained systems. (2) The
developed algorithm is proved to have higher estimation precision
than the projection method, the unconstrained method and the null
space method. (3) The new filter is designed under a mild assump-
tion, and the constrained Kalman predictor developed under stronger
assumptions is shown to be a special case of our approach.

The remainder of this paper is organized as follows. In Section 2, a
dynamic system model with linear equality constraints is described,
which is then transformed into a new system without constraints. The
recursive estimator for the constrained state is presented in Section 3.
Section 4 compares the new method with other three constrained
algorithms and gives a degenerate form of our approach. A numerical
example is shown in Section 5 and a conclusion is provided in Section 6.

2. Problem formulation and preliminaries

2.1. Problem formulation

Consider a class of linear systems described by the following
model:

xk ¼ Akxk�1þwk�1 ð1Þ

zk ¼Hkxkþvk ð2Þ

where xkARn is the state vector satisfying constraints

Dkxk ¼ dk ð3Þ

and zkARm ðmrnÞ is the measurement output. wk and vk are
independent Gaussian white noises with covariance Uk40 and
Rk40, respectively. AkARn�n, HkARm�n, DkARs�n and dkARs are
system matrix, observation matrix, constraint matrix and constraint
vector, respectively. In this paper, Dk is assumed to have full row
rank s. This assumption can always be satisfied by a linear trans-
formation and renaming the constrained matrix Dk and vector dk.

2.2. System transformation

Since RankfDkg ¼ s, there exists an invertible matrix D1;k com-
posed of s columns in Dk. Without loss of generality, we assume
that the first s columns of Dk form D1;k, and the last n�s columns
are denoted as D2;k. Then, we have Dk ¼ ½D1;k D2;k�. Correspond-
ingly, the system state is rewritten as xk ¼ x1;k

x2;k

h i
, and (3) becomes

dk ¼ ½D1;k D2;k�
x1;k
x2;k

" #
¼D1;kx1;kþD2;kx2;k: ð4Þ

Since D1;k is invertible, Eq. (4) yields

x1;k ¼D�1
1;k dk�D2;kx2;k

� � ð5Þ

and

xk ¼
x1;k
x2;k

" #
¼ �D�1

1;k D2;kx2;k
x2;k

" #
þ D�1

1;k dk
0

" #
: ð6Þ

Substituting (6) into (1) gives

Dkx2;k ¼ Akx2;k�1þdkþwk�1 ð7Þ
where

Ak ¼ AkDk�1;Dk ¼
�D�1

1;k D2;k

I

" #
;

dk ¼ AkD1;k�1dk�1�D1;kdk;D1;k ¼
�D�1

1;k

0

" #
:

Similarly, substituting (6) into (2) yields a new measurement
equation

zk ¼HkDkx2;kþvk ¼Hkx2;kþvk ð8Þ
where Hk ¼HkDk.

Eqs. (7) and (8) form a new reduced-order system model
without constraint that is similar to singular systems [19].

3. A reduced-order recursive estimator

In this section, we intend to establish a unified framework to
deal with the addressed filtering problem for the systems with
linear equality constraints. The prediction of x2;k is first calculated
by using the filtering results at time instant k�1. Then, mea-
surement (8) is used to update the prediction. The prediction and
estimation of xk are computed through (6).

3.1. Prediction of system's state

At time instant k, suppose that the estimation x̂2;k�1j k�1 and
error covariance P2;k�1j k�1 are known. To give the prediction of
the state, the following lemma is needed.

Lemma 1 (Nobe and Daniel [26]). Consider matrices α, β, RZ0 and
vector x with appropriate dimensions. The optimization problem

min
x

ðαx�βÞTRðαx�βÞ

has a unique solution if and only if the matrix αTRα is non-singular,
and the optimal solution is given by x̂ ¼ αTRα

� ��1αTRβ.

For system (7), the prediction problem can be described as

x̂2;kj k�1 ¼ argmin
x2;k

Dkx2;k�Akx2;k�1�dk

� �T
U�1

k�1 Dkx2;k�Akx2;k�1�dk

� �
:

Furthermore, with x̂2;k�1j k�1 and P2;k�1j k�1, the above problem
becomes

x̂2;kj k�1 ¼ argmin
x2;k

Dkx2;k�bk
� �T

U
�1
k�1 Dkx2;k�bk

� � ð9Þ

where

bk ¼ Akx̂2;k�1j k�1þdk;Uk�1 ¼Uk�1þAkP2;k�1j k�1A
T
k :

Since Uk�1 is positive definite and Dk is full column rank, it can be
concluded that D

T
kU

�1
k�1Dk is invertible. With Lemma 1, the optimal

solution for (9) is

x̂2;kj k�1 ¼ D
T
kU

�1
k�1Dk

� ��1
D

T
kU

�1
k�1Akx̂2;k�1j k�1 ð10Þ

whose error covariance is

P2;kj k�1 ¼ D
T
kU

�1
k�1Dk

� ��1
: ð11Þ
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