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This paper deals with the problem of chaotic synchronization for coupled neural networks by a novel
control strategy. Additional communication control graphs which prescribe the information flow avail-
able for controls purposes are introduced, and such pinning system has not been investigated before.
Many relaxed information are used to construct augmented Lyapunov-Krasovskii functional (LKF), which
makes use of more relax variables by employing the new type augmented matrices with Kronecker
produce operation. By resorting to Lyapunov function methods and analysis techniques, the tasks to get
the pinning synchronization of dynamical networks are solved in terms of a set of LMI inequalities, which
are easy to be analyzed or tested. Finally, numerical simulations are performed to demonstrate the
effectiveness of the analytical results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks have attracted the attention of many
researchers from different areas since they have been successfully
applied in many fields including signal and image processing,
associative memories, combinatorial optimization, automatic
control, and so on (see [1-8], references therein).

Recently, the research on synchronization and dynamical
behavior analysis of coupled neural networks has become an
important direction [9-11]. So it is necessary to develop a method
to study the synchronization dynamical behavior of coupled
neural networks, which can help to improve the stability, safety
and efficiency of the system.

In many circumstances, coupled neural networks cannot syn-
chronize by themselves; thus, some control strategies should be
adopted to achieve synchronization. Pinning control, as an
important control technique, in the past ten years, has been widely
used to synchronize complex dynamical networks. On the one
hand, Pinning control has been developed as an effective method
to design controller feedback gains. For complex systems with
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coupling delays, various techniques have been utilized to deal with
the pinning synchronization, such as [12-16]. However, in these
papers, there still exist some fundamental and yet challenging
problems in pinning control of coupled networks: (1) What kinds
of pinning schemes should be chosen for a given complex network
to achieve synchronization? (2) What types of controllers should
be designed to ensure the synchronization? (3) How to solve the
pinning synchronization problems for neural networks with
hybrid coupling?

Motivated by the results of the mentioned discussions, in this
paper, we will study the hybrid synchronization of coupled general
complex dynamical networks with nonlinear and linear coupling
via pinning control. We propose a novel pinning control strategy
to solve synchronization problems for coupling neural networks.
Furthermore, by employing augmented LKF, we can handle mul-
titude Kronecker product terms. Combining the pinning control
method with linear matrix inequality technique, some sufficient
conditions for the hybrid synchronization of the drive and
response networks.

Notations: R" is the n-dimensional Euclidean space; R™"
denotes the set of m xn real matrices. I, represents the n-
dimensional identity matrix. The notation X >0 (respectively,
X > 0) means that X is positive semidefinite (respectively, positive
definite). The notation A ® B stands for the Kronecker product of
matrices A and B; diag(- - -) denotes a block-diagonal matrix; [¥ ¥]


www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.02.015
http://dx.doi.org/10.1016/j.neucom.2016.02.015
http://dx.doi.org/10.1016/j.neucom.2016.02.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.02.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.02.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.02.015&domain=pdf
mailto:lpwang@mail.tsinghua.edu.cn
mailto:pzhzhx@126.com
mailto:zhangbinbin_uestc@hotmail.com
mailto:tdma@cqu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2016.02.015

L. Wang et al. / Neurocomputing 193 (2016) 260-267 261

stands for [l’fT Yz} Matrix dimensions, if not explicitly stated, are

assumed to be compatible for algebraic operations.

2. Preliminaries

In this section, we introduce a novel pinning control strategy for
coupled neural networks. Consider the following control system:

xi(t) = — Cxi(t) +Af(xi(0) + Bf (xi(t — 7(1)) + (£

N N
+ 3 GPDx(t)+ D GPDof (xi(t— () +ui(h), i=1,2, ...1,
i=1 j=1

xi(t) = — Cxi(t) +Af(xi(0) + Bf (xi(t — 7(1)) + 1(6)

N N
+ 3 GPDX()+ D GPDof (it — (1), i =1+1,1+2,..,N,
j=1 j=1

M

where x;(t) = (X1 (1), Xi2(t), ..., Xin(t))T € R" is the neuron state vector
of the ith network at time t. f(x;(t)) = (f1(Xi1(t)).f2Xi2(t)), ...,
Fain@®)', 10 = A7), 150, ... [y(©)" € R", C=diag(c, ¢y, ..., cn) > 0
is the state feedback coefficient matrix, A, Be R™" represent the
connection weight matrix, G@ =(G§Jf”)NxN,(q= 1,2) represent the
coupling connections; Dq,D, e R™" represent the inner coupling
matrix and the discrete-delay inner coupling matrix. z(t) is time-

varying delay, and satisfy
O<tz(t)<t, O<t()<pu<l,

7 and p are known constant scalars.
u;(t),i=1,2,...,N, are the controllers to be designed. We design
the linear state feedback controllers by

N
u= Y KPDixi(t)—xi(t)

j=1j#i
N
+ ) KPDyf (it —T(t) — Xi(t —7(D))). @)
j=1j#i

where ki >0,(q=1,2), for i=1,2,....; and ki’ =0, for i=1I+
1,1+2,...,N, kg’) are the control gains.
System (2) can be rewritten as

N N
u®) =Y LIDix()+ Y L Daf (xj(t — (1)) 3)
j=1 ji=1
Where matrix L9 = (LP)y,. (g =1,2) are defined as
( @ ;i
Lijg) = kuq 51 ?g],
N
LP=- 3" K ij=12,...N.
j=1j#i

The initial conditions are given by
xi(s)=IIjp(s) e P([—7,0,R"), i=1,2,...,N.
For simplicity, let
X(t) = X[ (©),X5(0), ... (O,
10 =", 0", ...I" 1),
Fx(t) = (T 1 (0). fT a0, ... f T en (O
U(t) = i (), u3(), ..., ug ()"

Combining with the sign ® of Kronecker product, model (1)
can be rewritten as

x() = —(n ® Ox(t)+(Iy ® AFX(®)+ Iy ® B)Fx(t—1(t)+1(t)
+(GV ® Dx(t)+(G? ® Dy)F(x(t—(t)))+U(b) 4)

From Eq. (3), we can obtain

Ut)= (L ® Dyx(t)+(L? ® Dy)F(x(t—1(t))) 5)

Remark 1. The coupling connection weights Gf.].” and ngz’ repre-
sent two graphs which we call the physical coupling graphs. These
graphs are fixed and the weights are prescribed. To design the
controls uit) we introduce two additional graphs, namely the
communication control graphs, with weights k;]’ and k;z’.

Throughout this paper, the following assumptions are needed.

Assumption 1. The outer-coupling configuration matrices of the
complex networks satisfy

@ _ @ P
G =G"=0, i#jq=1,2

N
@ _ @
Gi'=- > G
Jj=1j#i

ij=1,2,..,N

Assumption 2 (Liu et al. [17-19]). For je1,2,...,N, Vs1,52 €R,
S1 # S, the neural activation functions satisfy

o <fj(51)_fj(52) <ot

r = r

S1—52
We define
: _ - . (o} +o7  of+oy
Ay =diag(o; o7 ,....,0f 6,), A,=diag R n 5 n )

Remark 2. As discussed in [19], the constants o;,0; in
Assumption 2 are allowed to be positive, negative, or zero. Hence,
the resulting activation functions could be nonmonotonic and
more general than the usual sigmoid functions. In addition, when
using the Lyapunov stability theory to analyze the stability, such a
description is particularly suitable since it quantifies the lower and
upper bounds of the activation functions that offer the possibility
of reducing the induced conservatism.

Next, we give some useful definitions and lemmas.

Definition 1. System (4) is said to be pinning synchronized if the
following holds:

tlim Ix;(t)—x;(HOI =0, ij=1,2,..,N

Lemma 1. Let ® denote the notation of Kronecker product. Then, the
following relationships hold:

(1) (@A) ® B=A ® (aB)

2) A+B) @ C=A® C+B®C

(3) A® B)(C ® D)=(AC) ® (BD)

(4) A®B)'=A" @ B

Lemma 2 (Liu et al. [20]). Let e=(1,1,...,1)T, En=ceel, and
U=NIy—Ey, MeR"", x=xI,x5, x0T, and y=1,y5,...y0)T
with x,y, eR",(k=1,2,---,N), then

N
X'(U @ My = Z

1<i<j<N

*i —x)"M(y; - y;)

Lemma 3. (Jensen's inequality): For constant matrix ¥ e R™™, Y7 =
Y > 0, scalar p > 0 and vector function w : [0, p] - R", we have:

e (f mras) (] o)
p/o w (5)Y w(s)ds > /Ow(s)ds Y /0 w(s) ds

Lemma 4 (Zhang et al. [21]). Let H be an n x n any real matrix, K is
an n xn positive definite matrix, e=(1,1,...,1)T, Ey=ee’, and
U=NIy—Ey, x=&I,x5, . x0T, and y =7, y3, ...y with x;,y;
eR",(k=1,2,...,N) Then, for any vectors x and y with appropriate



Download English Version:

https://daneshyari.com/en/article/6865455

Download Persian Version:

https://daneshyari.com/article/6865455

Daneshyari.com


https://daneshyari.com/en/article/6865455
https://daneshyari.com/article/6865455
https://daneshyari.com

