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Learning-based partial differential equations (PDEs), which combine fundamental differential invariants
into a nonlinear regressor, have been successfully applied to several computer vision and image pro-
cessing problems. However, the gradient descent method (GDM) for solving the linear combination
coefficients among differential invariants is time-consuming. Moreover, when the regularization or
constraints on the coefficients become more complex, it is troublesome or even impossible to deduce the
gradients. In this paper, we propose a new algorithm, called fast alternating time-splitting approach
(FATSA), to solve the linear combination coefficients. By minimizing the difference between the expected
output and the actual output of PDEs at each time step, FATSA can solve the linear combination coeffi-
cients much faster than GDM. More complex regularization or constraints can also be easily incorporated.
Extensive experiments demonstrate that our proposed FATSA outperform GDM in both speed and

Computer vision quality.

Image processing
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1. Introduction

Partial differential equations (PDEs) have been successfully
used to solve many practical problems in computer vision and
image processing [1-3], such as denoising [4,5], enhancement
[6,7], inpainting [8], segmentation [9,10], and optical flow com-
putation [11,12]. However, it is usually difficult to design a PDE
system for a particular task which requires high mathematical
skills and good insight into the problem. According to [13], the
existing methods of designing PDEs can be mainly classified into
two groups. The methods of the first group write down PDEs
directly, which requires good mathematical understandings on the
properties of the PDEs. The methods of second group first define
an energy functional [14], which pursues the expected properties
of the output image or video, and then derive evolution equations
by computing the Euler-Lagrange variation of the energy func-
tional. For example, the ROF model [15] and TV-L; [16] for image
denoising are designed directly, while the Nambu model [17] and
the PL model [18] for color image processing are designed in the
variational way.

To reduce the difficulty in designing PDEs for complex vision
problems, Liu and Lin et al. [13] proposed a framework that learns
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PDEs from training image pairs recently. They first considered
learning PDEs for grayscale image restoration [19], which involve an
anisotropic diffusion term. Then they generalized the idea sig-
nificantly by linearly combining fundamental differential invariants
that are invariant to translation and rotation. These differential
invariants serve as “bases” of differential operators [13,20]. They
utilized the gradient descent method (GDM) to solve the linear
combination coefficients. The learnt PDEs have been successfully
applied to various problems, such as image denoising, debluring,
object detection, color to gray and demosaicking [13,21,22].
However, GDM has several drawbacks. First, the convergence
speed of GDM is very slow due to the fact that objective functional
is flat. Experiments show that the magnitude of gradient is usually
at the order of 10~3 (Fig. 4), even at the beginning iterations.
Therefore, the solution of GDM does not improve the initial value
very much. Second, it needs to solve the adjoint PDEs to obtain the
gradient, which is difficult to deduce and also time-consuming.
Third, when the regularization or constraints on the linear com-
bination coefficients become more complex, e.g., we use L; norm
as the regularizer or add boundedness constraints, the deduction
of gradient becomes very involved or even non-existent because of
the non-differentiablity of the objective functional. Last, the
quality of learnt PDEs is not very good. For example, the magni-
tudes of coefficients are unbalanced. We can see from Fig. 4(a) that
most of a,(t)'s are close to zeros while some jump to more than 20.
This can cause numerical instability as the differential invariants
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involve multiplications of second order derivatives. As a result,
blowup might occur when we apply the learnt PDEs to test images.
Moreover, we can also see from Fig. 4(c) that b{(t)'s are very close
to zeros, which means that the indicator function is actually
ineffective.

To overcome the above short-comings of GDM, we propose a
new method, called fast alternating time-splitting approach
(FATSA), to solve the linear combination coefficients. We first
discretize the PDEs in time. Then we minimize the difference
between the expected output (ground truth) and the actual output
of the PDEs at each time step n, which is a nonlinear regression
problem and can be solved by alternately minimizing a;(nAt)'s and
bij((n—1)At)'s. In such a greedy manner, the linear combination
coefficients can be updated sequentially in time. Based on FATSA, it
is convenient to add constrains and regularization on the coeffi-
cients, even when these constrains and regularization are non-
differentiable. Moreover, we do not need to deduce and compute
the adjoint PDEs any longer. Besides, compared with GDM, FATSA
can greatly reduce the training time and the training error. For
grayscale images, the speed of training is accelerated by ten times.
For color images, the training time is cut by half. In summary, the
contributions of this paper are summarized as follows:

e We propose a new fast alternating time-splitting approach
(FATSA) to solve the PDE constrained optimal control problem,
which not only speeds up the learning process, but also
improves the results.

e Compared with GDM, FATSA is much simpler. It computes the
linear combination coefficients in temporal order. It avoids to
compute the adjoint PDEs for evaluating the Gateaux deriva-
tives [23] of the objective functional.

® FATSA is much more flexible than GDM. When we add more
general regularizations (e.g., non-smooth regularization) and
extra constraints on the linear combination coefficients, it can
also improve the results.

The rest of the paper is organized as follows. First of all, we
review the learning-based PDEs methods briefly in Section 2. Then
we present the main idea of FATSA and the details of alternating
minimization in Section 3. In Section 4, we discuss the complexity
of FATSA and make a detailed comparison with GDM [13]. We also
extend FATSA to solve learning-based PDEs for vector-valued
image processing problems. Then in Section 5, we compare the
performance of FATSA and GDM on some computer vision and
image processing problems. Finally, we conclude our paper and
discuss the future work in Section 6.

2. Learning-based PDEs

In this section, we briefly review the framework of learning-
based PDEs for computer vision and image processing problems.
More details can be found in [13,21,22].

2.1. Mathematical formulation

The current learning-based PDEs are grounded on the transla-
tional and rotational invariance of computer vision and image
processing problems. Namely, when the input image is translated or
rotated, the output image should be translated or rotated accord-
ingly. Then it can be proven that the governing equations are
functions of fundamental differential invariants, which form “bases”
of all differential invariants that are invariant with respect to
translation and rotation. We assume that the evolution of the image
u is guided by an indicator function v, which collects large scale
information. As shown in Table 1, there are 17 fundamental

Table 1

Fundamental differential invariants up to the second order, where tr is the trace
operator and Vf and Hy are the gradient and the Hessian matrix of function f,
respectively.

j inv;(u,v)

0,1,2 1,v,u

3.4 IvviZ =v24+v2, IVl = u? +u?

5 VT - Vu=vyu+wyuy

6,7 tr(Hy) = Vax + Vyy, tr(Hy) = e+ Uyy

8 (V)T Hy - VV = V2Vi + 2VxVy Vg + V2V,

9 (VW) Hy - YV = V2 + 2V, Vy Uy + V2L

10 (V)T Hy - Vil = Vil Vi + (Vally + U Vy Wiy + Vy Ly Vyy

1 (VW' - Hy - VU = Vil + (Villy + Uy Vy YUy + Vy Uy Uy

12 (V)" - Hy - VU = U2V + 2ty Viy + U2 Vyy

13 (V)" - Hy - Vit = 12U+ 2ty Uy + 120Uy

14 tr(H2) = v3,+2v2, +v2,

15 tr(Hy - Hy) = Vixllxx + 2Viy Uy + Vyyllyy

16 tr(H2) = 12, +2u2, +12,
differential invariants {inv;(u,v), i=0,...,16} up to the second
order. For brevity, we denote

inv(u, v) = [invo(u, v), invy (u, v), ..., invig(u, v)]", where ()T denoted
the transpose of matrix (or vector).

The simplest function of fundamental differential invariants is a
linear combination of them. Therefore, learning the PDEs can be
transformed into learning the linear combination coefficients
among the fundamental differential invariants, which are func-
tions of time t only and independent of spatial variables [13,21,22].
To this end, one may prepare a number of input/output training
image pairs. By minimizing the difference between the output of
PDEs and the ground truth. We set the initial function as the input
image. This results in a PDEs constrained optimal control problem:

) 1M )
min E@(t),b(t)) = jmgl /Q (O —um(x,y,T))" d2

16 T 16 T

+,11Z/ a(t) dt+/122/ bi(t) dt, M
i=07/0 i=0”/0
ag_: —inV (U, Vi) - a() =0, (X,y,t)€Q,
Um(x,y,t)=0, xy.tel,
0)=1 Q

ot ZI‘T(XJ, ) =Im, *,y) € £, @
= iV (v um) - b(H =0, (xy.H)eQ.
Vm(X,y,t) =0, xy.tel,
Vm(x9y70):Ima (X,y)E.Q,

where {(Ih,On), m=1,...,M} denote the M input/output training
image pairs, un(x,y, t) is the evolution image at time t with respect
to the input image I, vm(X,y,t) is the corresponding indicator
function, 2 c R? is the (rectangular) region occupied by the
image,' T is the temporal span of evolution which can be nor-
malized as 1, Q =2 x [0,T], I =052 x [0,T], and €2 denotes the
boundary of £2. The last two terms in (1) are regularization terms
on the coefficients a;(t) and byt). We denote it as a(t)=
[ao(t), a1 (t), ..., a16(H)]" and b(t) = [bo(t), b1(t), ..., b1g(t)]" for brevity.
For inv;(v,u), it can be acquired by simply switching u and v in
inv;(u, v).

! The images are padded with zeros of several pixels width around them, so
that the Dirichlet boundary conditions, un(x,y,t)=0,vn(x,y,t)=0,(x,y,t)e I, are
naturally fulfilled.
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