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a b s t r a c t

In this paper we introduce a new kernel for sequences of structured data, investigate its properties and
propose a fast implementation. We demonstrate using the theory of infinitely divisible kernels that this
kernel is positive definite, that it is a radial basis kernel and that it reduces to a product kernel when
comparing two sequences of the same length. We present an implementation of this kernel using
dynamic programming techniques that leads to an algorithm of lower complexity than competing
kernels. We illustrate that this kernel presents a consistent behavior in the context of sub-sampling of
continuous time series. Finally we compare this kernel with the global alignment kernel in two
classification tasks with real world data using support vector machines.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Kernel methods have proven extremely useful for dealing with
a wide range of problems [1], in particular they have been used to
extract nonlinear features using extensions of linear methods [2]
and to treat structured data as vectors in a Hilbert space [3]. In this
publication we deal with the case of data organized as sequences,
whose elements lie in an arbitrary space X , which can be a space
of structured data. We only assume X is endowed with a kernel k.
We denote by Xn the space of finite sequences with elements in X ,
such that Xn ¼⋃1

i ¼ 1X i. In the literature X and k are called
respectively the ground space and the ground kernel whereas Xn

is sometimes called the sequence space. The goal is now to design
a sequence kernel kn on Xn with suitable properties.

Framework: Let x¼ ðx1;…; xlÞ and x0 ¼ ðx1 0;…; xm 0Þ be two ele-
ments of Xn. In the general case, these two elements may not have
the same length, and thus one cannot use traditional vector-based
approaches such as a Gaussian kernel in an Euclidean space to
compare these sequences.

One solution is to define alignments between sequences. An
alignment associates elements from one sequence to elements in
another sequence such that the order of elements is preserved.

The well-known dynamic time warping method [4] for exam-
ple can be defined using alignments. This algorithm seeks the best

alignment between two sequences, and results in the so-called
optimal assignment kernel. Although this kernel has been exten-
sively used by practitioners it has been demonstrated recently that
it is in fact not positive definite [5]. Since then some researchers
have proposed alternatives, such as the global alignment kernel [6]
or the spectrum kernel [7].

Methodology: The kernel studied in this work is novel in two
regards. Firstly, we only consider a particular kind of alignments
with repetitions, those in which only the shorter sequence can have
repeated elements, hence the name “one-sided”. Secondly, instead
of only retaining the best alignment like in the optimal assignment
we rather consider the mean (in a sense which shall be clarified) of
all alignment scores.

Contributions: We demonstrate using the theory of infinitely
divisible kernels that the proposed kernel is positive definite. We
also illustrate many other interesting practical properties: it is a
radial basis kernel, has no issues of diagonal dominance, and
presents a consistent behavior in the case of time series sub-
sampling. We propose an implementation of this kernel using
dynamic programming techniques, which results in a complexity
of Oðl� ðm� lÞÞ for a pair of sequences of respective lengths lom,
which is much faster than competing techniques which have a
complexity in Oðl�mÞ.

2. Alignments and alignment scores

Let x¼ ðx1;…; xlÞ and x0 ¼ ðx1 0;…; xm 0Þ be two elements of Xn.
An alignment associates elements from one sequence to elements
in another sequence such that the order of elements is preserved.
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Alignments can either introduce gaps or repetitions. Once an
alignment has been found, it is then possible to compute an
alignment score between the two sequences, by for example
summing the pairwise distances between aligned elements.

2.1. Global alignments

In this work we will be interested in alignments that introduce
repeating states. Formally we define an alignment π of length p
between two sequences of lengths l and m as a pair ðπ1;π2Þ of p
increasing indexes such that

1¼ π1ð1Þr⋯rπ1ðpÞ ¼ l

1¼ π2ð1Þr⋯rπ2ðpÞ ¼m ð1Þ
and

π1ðiþ1Þ�π1ðiÞ
π2ðiþ1Þ�π2ðiÞ

 !
A

0
1

� �
;

1
0

� �
;

1
1

� �� �
ð2Þ

We denote by Aðx; x0Þ the set of all alignments between x and x0.
The length p of an alignment π is denoted by jπ j .

2.2. One-sided alignments

In this paper we will be interested in a particular subset of
alignments that we have called one-sided alignments. These are
the alignments where only the shortest sequence can have repeated
elements. Suppose sequence x is shorter than x0, such that lrm;
thus the condition on the alignment π becomes

π1ðiþ1Þ�π1ðiÞ
π2ðiþ1Þ�π2ðiÞ
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;
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One should remark that between two sequences of the same
length, there exists only one one-sided alignment, which is the
trivial alignment 8 iA1…l;π1ðiÞ ¼ π2ðiÞ ¼ i. In the general case
where lrm it can be seen from Eq. (3) that there are ðm�1

l�1 Þ one-
sided alignments between x and x0. We denote by A� ðx; x0Þ the set
of one-sided alignments between x and x0.

2.3. Representation of alignments

It is possible to conveniently represent alignments between two
sequences of lengths l and m as paths on a matrix of size (l,m). Note
that in this section as well as in the rest of this work we shall always
represent this matrix with the shorter sequence as the vertical indexes.
At each step, the vertical position is given by π1 which corresponds to
x and the horizontal position is given by π2 which corresponds to x0.
Note that Eqs. (1)–(3) impose restrictions on the paths on the matrix.
Fig. 1 presents an example of both a global and a one-sided alignment
between sequences of lengths 3 and 6. One can see in Fig. 1 that
because of Eq. (3) and the fact that each path must start and end at
respectively the left-hand top corner and the right-hand bottom

corner (Eq. (1)) some parts of the alignment matrix in the one-sided
case cannot be attained and are displayed with red stripes.

2.4. Examples of kernels defined with alignments

2.4.1. Optimal assignment kernel
Based on the popular dynamic time warping technique [4], the

optimal assignment kernel considers only the “best” alignment
between two sequences. When dealing with continuous values
such that X ¼Rd the best alignment is the one that maximizes the
similarity:

kDTWðx; x0Þ ¼ max
πAAðx;x0 Þ

∏
j π j

i ¼ 1
kðxπ1ðiÞ; x

0
π2ðiÞÞ

Although widely used in the literature, Vert [5] demonstrated that
this kernel is in fact not positive definite and thus cannot be used
as is in kernel methods.

2.4.2. Global alignment kernel
To circumvent this issue, Cuturi et al. [6] have proposed an

alternative kernel, named the global alignment kernel. Contrary to
the optimal assignment kernel, this one does not only consider the
best alignment but rather sums the scores associated with all
possible global alignments. As a consequence this kernel may
prove more robust to quantify the similarity between two
sequences, and they demonstrated that it was indeed positive
definite under mild conditions:

kGASðx; x0Þ ¼
X

πAAðx;x0 Þ
∏
j π j

i ¼ 1
kðxπ1ðiÞ; x

0
π2ðiÞÞ ð4Þ

3. The one-sided mean alignment kernel

The fact that we use only one-sided alignments for the
definition of this kernel will let us introduce another formalism
that will not only simplify the notations but also the demonstra-
tion of the main theorem of this contribution. The formalism we
introduce is that of dilatation operators.

A dilatation operator is a function that maps a sequence to a
longer sequence by repeating one or more of its elements while
still keeping the order. We denote by ξl-m the set of dilatation
operators that map sequences of length l to sequences of length m.
The dilatation operators will be properly defined in later sections,
but in the meantime one only has to know that there is a one-to-
one correspondence between the set of one-sided alignments
A� ðx; x0Þ where x and x0 are two sequences of respective lengths
lrm and the set of dilatation operators ξl-m. Note that conse-
quently the cardinality of this set verifies jξl-m j ¼ ðm�1

l�1 Þ.
Before delving into the technical details we provide in Table 1 a

set of notations that may be helpful for reading the sequel.

3.1. Practical case: real values with Gaussian kernel

We start by giving an example of the one-sided mean kernel in
the simple case where elements of sequences are real values:
X ¼R, and the ground kernel k is the one-dimension Gaussian
kernel kðx; x0Þ ¼ expð�ðx�x0Þ2Þ where x; x0AR. This is useful to get
a sense of how this kernel is represented in most practical cases,
before we delve into the more abstract setting of infinitely
divisible kernels. As described in Table 1, let x and x0 be two
elements of Xn. Furthermore we refer to the shorter and longer
elements of ðx; x0Þ as xl and xm respectively, with lrm denoting
the respective lengths of the sequences. Note that xl and xm are not
to be mistaken for xl and xm which refer respectively to the lth and
mth elements of x. In the real case the one-sided kernel kn is

Fig. 1. Global and one-sided alignments. The parts of the matrix with red stripes in
the one-sided case cannot be attained due to Eq. (3): (a) global alignment and
(b) one-sided alignment. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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