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a b s t r a c t

This paper deals with Principal Components Analysis (PCA) of data spread over a network where central
coordination and synchronous communication between networking nodes are forbidden. We propose
an asynchronous and decentralized PCA algorithm dedicated to large scale problems, where “large”
simultaneously applies to dimensionality, number of observations and network size. It is based on the
integration of a dimension reduction step into a gossip consensus protocol. Unlike other approaches, a
straightforward dual formulation makes it suitable when observed dimensions are distributed. We
theoretically show its equivalence with a centralized PCA under a low-rank assumption on training data.
An experimental analysis reveals that it achieves a good accuracy with a reasonable communication cost
even when the low-rank assumption is relaxed.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction plays an important role in solving large
scale machine learning problems where input data usually consists of
a huge number of observations in a high-dimensional space. Classi-
fication, regression, or similarity ranking of such raw data often raise
computation and storage issues. In practice, the intrinsic dimension-
ality of observed phenomena is much lower than the extrinsic
dimension of the input space. Dimensionality reduction then aims
at projecting input data into a lower-dimensional space such that
subsequent learning stages keep a maximal accuracy.

Principal Components Analysis (PCA) is a linear approach to
dimensionality reduction [1,2]. Given a sample matrix XARD�n made
of n observations in RD, PCA finds an orthonormal basis
U⋆ ¼ ½u1 ... uq�, ukARD that projects the input sample X into the q-
dimensional subspace, qoD, that retains the maximal variance in X.
Equivalently, the PCA solution is the linear projection that best
conserves the Gram matrix (i.e., the matrix of pairwise inner-
products):

U⋆ ¼ arg min
UARD�q

JX>X�X>UU>XJ2F s:t: U⋆> ¼U⋆�1 ð1Þ

The optimal conservation of the inner product makes PCA particularly
suited to feed algorithms that solely rely on the inner product instead
of the input data [3] (e.g., Support Vector Machines). PCA enjoys a
closed-form solution, as U⋆ is made of the q leading eigenvectors of

the sample covariance matrix [2]:

C¼ 1
n
XX> �μμ> where μ¼ 1

n
X1 is the sample mean ð2Þ

Like most statistical learning tools, PCA was formulated for centralized
setups where all data are available at a single location. This assumes
that the solution can be computed by a single machine and that all
intermediary results fit in the main memory. However, this assumption
is unrealistic in most applicative fields that deal with very large sample
matrices. For instance, in biomedical, multimedia, or remote sensing
applications, D and n often grow up to millions. The sample and
covariance matrices then scale in Terabytes. Moreover, the OðD3Þ
complexity of covariance eigendecomposition translates into an exa-
flop computation cost. Besides, along with the democratization of
connected devices, data tends to originate from an increasing number
of distributed sources with reasonable computing capacity, immersed
in large unreliable networks without any central coordination. This has
led to a number of so-called Distributed PCA algorithms, designed to
deal with the spread of input data over multiple networking nodes.

Because computing μ and C would involve the full data X which is
unknown to individual nodes, distributed PCA requires dedicated
algorithms combining node-local optimization and inter-node com-
munications. Distributed PCA encompasses two main scenarios,
depending on the way the entries of X are spread over the networking
nodes. Consider a network made of N (strongly connected) nodes. In a
Distributed Samples (DS) scenario, each node i holds a distinct sample
XiARD�ni of ni observations (i.e., the columns of X are distributed).
Conversely, in a Distributed Coordinates (DC) scenario, each node
holds all n observations, but only gets a subset XiARDi�n of their
components (i.e., the rows of X are distributed). On average, each Xi is
then N times smaller than X, thus nicD in DS case while Dicn in DC
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case. No assumption is made on their exact sizes, as they may be very
different at each node. In both DS and DC scenarios, a typical objective
is to provide all nodes with compressed representations of their locally
hosted observations that account for the contribution of all compo-
nents. Nodes then have to find a consensus basis U⋆ that minimizes
the PCA objective defined in Eq. (1) over the complete data. Usually,
one also wants an operator that allows projection of future observa-
tions into the same output space, but not all approaches are able to
provide such operator at a low cost. In spite of similar goals, the DS
and DC scenarios have been tackled separately with very different
approaches in the distributed PCA literature [4].

In this work, we consider the asynchronous decentralized PCA
problem, which specializes distributed PCA by adding the follow-
ing constraints:

(C1) No sample exchange Samples cannot be exchanged between
nodes, for size, privacy or property reasons.

(C2) Asynchrony Nodes must never wait for each other.
(C3) Decentralization All nodes and links must play the same role.

Formally, nodes and links must be selected for commu-
nication with the same probability and all nodes must
run the same procedures.

(C4) Consensus All nodes must obtain the same orthogonal basis.
Node-local solutions must allow projection of future
observations.

Satisfying these four constraints, a distributed PCA algorithm
gains applicability to a wider range of networking situations such
as sensor networks, Internet-enabled multimedia devices, and cloud
computing systems, where central coordination or synchronous
functioning can be inapplicable. This work focuses on distributed
setups where the main limiting factor is not the node local comput-
ing capacity but rather the network infrastructure. In such setups,
communication cost and latency, synchronization constraints and
unpredictable (dis)connections can be much more harmful than
slightly more demanding computations. This is typically the case in
sensor or mobile networks with extremely large number of nodes.

In this paper, we propose a decentralized and asynchronous
algorithm called Asynchronous Gossip Principal Component Ana-
lysis (AGPCA) that satisfy all the above constraints. Our algorithm
is a revision and extension of previous work presented in [5]. The
original contributions of this paper are the following:

� We give a formal and in-depth description of AGPCA in the DS
case, as well as the intuitions leading to the algorithm.

� We propose an extension to the DC case through a dual
transcription.

� Provided a low rank property is met on the data, we give a
theoretical guarantee that AGPCA yields the exact solution of
the centralized PCA.

� We present experiments for both DS and DC scenarios, as well
as results for various network topologies.

The remaining of this paper is organized as follows: In the next
section, we detail related works on distributed PCA algorithms. Then,
we present our AGPCA algorithm for the DS case in Section 3. We
present the extension to the DC case in Section 4. In Section 5, we
theoretically show that the output of AGPCA is identical to a centralized
PCA under a low-rank assumption on the data. The last section gathers
experimental results both in DS and DC cases, before we conclude.

2. Related work

In this section, we present existing algorithms for distributed
PCA. We first present methods that integrate prior information on

the input data. Then, we compare existing algorithms in terms of
decentralization and asynchrony. Finally, we discuss the benefits of
approaches based on model aggregation over those based on
iterative optimization passes over the data.

2.1. Prior knowledge about input data

Existing distributed PCA approaches can be first distinguished by
their level of prior knowledge about the input data matrix X.
Indeed, X can either carry node-local observations independently
of their network relationships or integrate properties of the net-
work graph itself. In the latter case, a typical object of interest is the
adjacency matrix of the weighted network graph, whose entries
correspond to some scalar relationship between nodes. For instance,
when these entries represent estimated geographic distances
between neighboring sensors, their absolute geographic position
can be recovered by computing the three principal components
through distributed PCA [6].

Other methods have considered the case where the data distribu-
tion inherits specific characteristics from the network structure, such
as statistical dependencies. This happens when, e.g., data is generated
by flowing through directed paths along the network structure, thus
making data at downstream nodes dependent on data at upstream
nodes, but independent from each other. Properly modeling these
statistical dependencies through Graphical Models, either undirected
(e.g., Decomposable Gaussian Graphical Models [7]) or directed (e.g.,
Directed Gaussian Acyclic Graphical Models [8]), one can benefit
from the natural sparsity of the concentration matrix (i.e., the inverse
covariance) or its Cholesky factor to estimate the principal subspace
with reduced communication costs.

On the contrary, in this work the network topology has no
relevance in the desired result, as information is solely carried by
the nodes and not by the links. Still, link-related data can be seen
as observations relative to one or both of their ends, making
methods aimed at node-related data suitable for link-related data.

2.2. Decentralization and asynchrony

Another classification criterion separates decentralized approaches
from those which assign node-specific roles and asynchronous
approaches from those based on synchronous communications.

In [9], a parallel PCA algorithm is proposed. Sufficient statistics
Xi1 and XiX

>
i are locally computed at all nodes and transmitted to

a master node that performs a global Singular Value Decomposi-
tion (SVD) to obtain the PCA result. This approach is only suitable
when the master node can handle the OðD3Þ complexity of the SVD
and assumes that D�D covariance matrices can be exchanged on
the network, which is unrealistic in many large scale contexts.

In [4], a distributed PCA algorithm for the DC scenario is
proposed. Exchanging only q� q matrices, nodes iteratively max-
imize the variance retained by the reduced basis. Even though the
process is decentralized, nodes have to update their estimates
synchronously before performing any further computation, thus
violating (C2). The whole system performance is then limited by
the slowest networking node. Moreover, synchronous updating is
hard to sustain in large networks and can result in overwhelming
idle phases even when nodes have identical computing resources.

A fully asynchronous and decentralized Power Iteration method
is proposed in [10] using random matrix sparsifications and a
nested Sum–Weight Gossip averaging protocol to reduce commu-
nication costs. However, its original formulation only provides the
first principal component. Synchronous passes would be required to
sequentially obtain the next ones.
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