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a b s t r a c t

The idea of local input space histograms was recently introduced as a means to augment prototype-based
vector quantization methods in order to gather more information about the structure of the respective
input space. Here we investigate the utility of this new idea for analysing and clustering high-
dimensional data. Our results demonstrate that the additional information gained about the input space
structure can be used to enable and improve visualization and hierarchical clustering. Furthermore, we
show that contrary to common view the Minkowski distance with p41 can be a meaningful distance
measure for high-dimensional data.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of data on a large scale is a challenging task.
Commonly there is only few apriori knowledge available about
structures contained within the data, e.g., information about possible
classes the data could be partitioned into. In such a case methods that
utilize forms of unsupervised competitive learning like the self-
organizing map (SOM, [1]) or neural gas (NG, [2]) can be used to
discover potential structures in the data. Both the SOM and NG are
prototype-based vector quantization methods that use a set of
prototypes to cover the particular input space as well as possible, i.e,
to minimize the quantization error based on a given dissimilarity
measure.

If there is little information about the structure of the data the
Euclidean distance is often chosen as a “default” dissimilarity measure.
In that case the individual prototypes can only represent local regions
of the input space as convex polyhedrons and more complex
structures must be approximated piecewise by multiple prototypes.
In order to gather more information about the input space structure
between prototypes the idea of local input space histograms [3] was
introduced recently. As a proof of concept it has been shown that
augmenting a growing neural gas (GNG, [4]) with local input space
histograms can improve the discovery of non-convex clusters in two-
dimensional datasets.

In this paper we investigate the utility of local input space
histograms for analysing and clustering high-dimensional data.
Section 2 introduces the methods and materials used in the

subsequently described experiments. In particular, the section
describes how a prototype-based vector quantization method – here
a GNG – can be augmented by local input space histograms. In
Section 3 the behavior of local input space histograms is analysed for
high-dimensional random data as well as high-dimensional color
histogram data. Section 4 discusses a number of interesting aspects
of our results. Finally, a short conclusion and suggestions for further
research are provided in Section 5.

2. Materials and methods

Growing neural gas revisited: To investigate the utility of local
input space histograms for the analysis of high-dimensional data we
extended a GNG as an exemplary prototype-based method. The GNG
is a topology representing network [5], i.e., it uses a data-driven
growth process to approximate the topology of the input space
instead of using a fixed network topology like, e.g., a SOM does. Here
we summarize the operation of the growing neural gas algorithm as
described by Fritzke [4]. The growing neural gas is a network that
consists of a set A of units and a set C of edges. Each unit aAA can be
described by a tuple1 ðw; eÞ with the prototype wARn, with n being
the dimension of the input space, and the accumulated error
variable eAR. Each edge cAC can be described by a tuple ða; b; tÞ
with the units a; bAA4aab that are connected by the edge and
the variable tAN which stores the current age of the edge.
The direct neighborhood Da of a unit a is defined as Da≔fbj(
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ða; b; tÞAC; bAA; tANg. The network is initialized with two units
that have random prototypes and accumulated error variables set
to zero.

A given input ξARn is processed by the network in the
following way:

� Find the two units s1 and s2 whose prototypes are closest to the
input ξ:

s1≔argmin að1Þ �ξjaAA
� �

; s2≔argmin að1Þ �ξjaAA\ s1f g� �
:

� Increment the age of all edges connected to s1:

cð3Þ≔0; cAC4cð1Þ ¼ s14cð2Þ ¼ b; 8bADs1 :

� If no edge exists between s1 and s2, create one:

C≔C [ fðs1; s2;0Þg:

� Reset the age of the edge between s1 and s2 to zero:

cð3Þ≔0; cAC4cð1Þ ¼ s14cð2Þ ¼ s2:

� Add the squared distance between the input ξ and the proto-
type of unit s1 to the accumulated error of s1:

sð2Þ1 ≔sð2Þ1 þ Jsð1Þ1 �ξJ2

� Adapt the prototype of s1 and all prototypes of its direct
neighbors bADs1 :

Δsð1Þ1 ≔ϵb ξ�sð1Þ1

� �
; Δbð1Þ≔ϵn ξ�bð1Þ

� �
; 8bADs1 :

� Remove all edges with an age above a given threshold tmax and
remove all units that no longer have any edges connected
to them.

� If an integer-multiple of λ inputs was presented to the net-
work insert a new unit r. The new unit is inserted between the
unit qAA with the maximum accumulated error and the unit
f ADq which has the largest accumulated error among the
neighbors of q, i.e., the prototype of unit r is set to

rð1Þ≔ðqð1Þ þ f ð1ÞÞ=2:
Create edges between q and r as well as f and r, and remove the
edge between the units q and f. Decrease the accumulated
errors of q and f by a factor α and set the accumulated error of
the new unit r to the decreased accumulated error of unit q.

� Finally, decrease the accumulated error of all units in A by a
factor β.

Typically, the inputs ξ are randomly chosen from a set of training
data and fed into the network until a given halting criterion (e.g., a
maximum network size) is met. In all experiments the following
parameter values were used:

ϵb ¼ 0:01; ϵn ¼ 0:0001; tmax ¼ 500;
λ¼ 2000; α¼ 0:5; β¼ 0:0005:

The parameters deviate from the values proposed by Fritzke [4]. They
result in a slower development of the GNG which turns out to be
more robust with respect to high-dimensional inputs. A slower
development compensates for possible inhomogeneities in the train-
ing data, which are in general more likely to occur in high-dimen-
sional data as the ratio between the number of available training
data points and the size of the input space typically diverges with
increasing dimension.

Local input space histograms: As described above, edges in a
GNG network are created between the first and second best
matching units (BMUs) s1 and s2 of each input ξ and are main-
tained as long as they are used regularly. Thus, the neighborhood
relations among units represented by the GNG network indicate
that the input space between connected units is not empty.
However, the mere existence of an edge does not provide any
further information about the underlying input space structure.
The core idea of local input space histograms is to increase the
available information in this regard by adding a small histogram
H¼ fh0;…;hk�1g, e.g., with k¼16 bins, to each edge cAC; c¼
a; b; t;Hð Þ of the GNG network and to update this histogram for
those inputs ξ that are mapped to the corresponding edge using a
distance ratio r:

r≔
Jsð1Þ1 �ξJ� Jsð1Þ2 �ξJ

Jsð1Þ1 �sð1Þ2 J
þ1;

with sð1Þ1 and sð1Þ2 being the prototypes of the first and second BMUs
for the given input ξ, respectively.

The ratio r lies in the interval [0,1] and describes how close the
prototype of the best matching unit s1 is to the input ξ in relation
to the prototype of the second best matching unit s2. A geometric
interpretation of the distance ratio is depicted in Fig. 1a. As a local
input space histogram cð4Þ is part of an edge cAC it is shared by the
two units cð1Þ and cð2Þ. Thus, the ratio r is used to either update
the upper or the lower half of the histogram depending which of
the units is the BMU s1:

Δhu ¼ 1; u¼
⌊kðr=2Þc if cð1Þ ¼ s1;

⌊kð1�r=2Þc if cð2Þ ¼ s1;

(
huAcð4Þ ¼ h0;…;hk�1

� �
:

The resulting histogram represents the distribution of the approx-
imate, relative positions of those inputs that are located somewhere
around the two connected units. Fig. 1b provides an example of local
input space histograms occurring in a two-dimensional GNG that
received uniform, random input.

The additional information provided by the local input space
histograms allows us to characterize the input space in more detail.
For example, it can be estimated if the input space between two con-
nected units is sparse or dense. One measure to quantify this pro-
perty is the average bin error2 eH of a histogram H:

eH≔
1
k

Xk�1

i ¼ 0

ei; ei≔

ffiffiffiffi
hi

p
=hi if hi40;

1 if hi ¼ 0;

(
hiAH¼ h0;…;hk�1

� �
:

In case of a local input space histogram cð4Þ the value of ecð4Þ will be
near 1 if the corresponding region of input space is sparse and it will
be close to 0 in case the input space is dense.

Distance measures: The analysis of high-dimensional data
spaces is accompanied by a number of problems that are
commonly referred to as the “curse of dimensionality” [6]. In
this context a major problem is that the ability to discriminate
data points by their relative distances diminishes with increasing
dimensionality [7]. To observe the impact of different distance
measures on the GNG and the local input space histograms
we use the Minkowski distance dp in our analysis with varying
values for p:

dpðx; yÞ≔
Xn
i ¼ 1

xi�yi
�� ��p !1=p

; x¼ ðx1;…; xnÞ; y¼ ðy1;…; ynÞ:

By choosing the Minkowski distance a range of popular distance
measures can be covered: for p¼1 it is equivalent to the
Manhattan distance, for p¼2 it is equivalent to the Euclidean
distance , and for p-1 it approaches the Chebyshev distance.

2 Note: the definition of the average bin error given here differs from [3].
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