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Exemplar based techniques such as affinity propagation represent data in terms of typical exemplars.
This has two benefits: (i) the resulting models are directly interpretable by humans since representative
exemplars can be inspected in the same way as data points, (ii) the model can be applied to any
dissimilarity measure including non-Euclidean or non-metric settings. Most exemplar based techniques
have been proposed in the unsupervised setting only, such that their performance in supervised learning
tasks can be weak depending on the given data. We address the problem of learning exemplar-based

Keywqrds: o models for general dissimilarity data in a discriminative framework in this contribution. For this
LMea(riplng vector quantization purpose, we consider variants of Kohonen's learning vector quantization model to handle data with only
edian

dissimilarities between available. Here the exemplars are the prototypes. The resulting classifiers

Dissimilarity data . . .
issimilarity represent data in terms of sparse models thereby reaching state-of-the art results in benchmarks. For

a real world data set in the field of veterinary medicine we report promising results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning has revolutionized the possibility to deal with
large electronic data sets. Nevertheless, rapid technological develop-
ments continue to pose challenges to the field, such as the big data
challenge, or the problem of complicated non-vectorial structures,
which are increasingly common. Examples of the latter include
biological sequences, mass spectra, or metabolic networks, where
advanced alignment techniques, background information, or general
information theoretical principles, for example, drive the comparison
of data points [53,46,35]. These data cannot be embedded in the
Euclidean space without loss of information. The measures which are
used to compare such kind of data often do not fulfill the properties
of a metric. Further, for dissimilarities such as used in social network
analysis even pseudo-Euclidean embedding such as proposed in [52]
might fail due to asymmetric dissimilarities. These developments
have caused the need for non-vectorial machine learning tools such
as e.g. structure kernels, recursive models, relational models, or
quotient embeddings [36,19,14].

Since learning tasks become more and more complicated, the
specific objectives are often not clear a priori. This challenge
requires increasingly interactive systems which allow humans to
shape the problems according to human insights and expert knowl-
edge at hand [66]. A vital property of machine learning models in

* Corresponding author.

http://dx.doi.org/10.1016/j.neucom.2014.12.096
0925-2312/© 2015 Elsevier B.V. All rights reserved.

this context is their interpretability by means of semantically
meaningful interfaces [56]. While interpretable models enable the
change of their functionality by experts, popular black box techni-
ques such as the Support Vector Machines (SVMs, [60]) often only
provide an excellent classification performance, but no insight on
why this is the case. It is hardly possible to visualize its decisions to
domain experts in such a way that relevant information can be
inferred based thereon by a human observer. The same argument,
although to a smaller degree, is valid for alternatives such as the
relevance vector machine or sparse models which typically still rely
on nonlinear combinations [67].

The demand of interpretability can be met with quite diverse
technologies, such as sparsity, relevance learning, or enhancement
by visualization [6]. One example is offered by dissimilarity based
learning: this relies on pairwise comparisons of given labeled data.
Hence it is usually easy to interpret the decision: a small number
of closest neighbors account for the observed classification. These
neighbors can directly be inspected by experts in the same way as
data points. Because of this fact, similarity based techniques enjoy
a large popularity in application domains such as biomedical
applications, whereby the methods range from simple k-nearest
neighbor classifiers and learning vector quantization up to
advanced techniques such as affinity propagation which repre-
sents a clustering in terms of typical exemplars [41,17,1].

Dissimilarity based techniques can be distinguished accord-
ing to different criteria: (i) The number of data points used
to represent the classifier ranging from dense models such as
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k-nearest neighbor to sparse representations such as prototype
based methods. To arrive at easily interpretable models, a sparse
representation in terms of few data points is necessary. (ii) The
degree of supervision ranging from clustering techniques such as
affinity propagation to supervised learning. Here we are interested
in classification techniques, i.e. supervised learning. (iii) The
complexity of the dissimilarity measure the methods can deal
with ranging from vectorial techniques restricted to Euclidean
spaces, adaptive techniques which learn the underlying metrics,
up to tools which can deal with arbitrary similarities or dissim-
ilarities [51,61,55]. Typically, Euclidean techniques are well suited
for simple classification scenarios, but they fail if complicated
structures are encountered.

Learning vector quantization (LVQ) constitutes one of the few
methods to infer a sparse representation in terms of prototypes
from a given data set in a supervised way [41], such that it offers a
good starting point as an intuitive classification technique whose
decisions can directly be inspected by humans. Although original
LVQ has been introduced on somewhat heuristic grounds [41],
recent developments in this context provide a solid mathematical
derivation of its generalization ability and learning dynamics [37]:
LVQ classifiers can be substantiated by large margin generalization
bounds [13,61,27]; the dynamics of LVQ type algorithms can be
derived from explicit cost functions [63]. Interestingly, already the
dynamics of classical LVQ provably leads to very good general-
ization ability in typical model situation as investigated in the
framework of online learning [9].

A severe drawback of standard LVQ type classifiers is their
dependency on the Euclidean metric. This problem can partially be
avoided by appropriate metric learning, see e.g. [29,61,43], or by
kernel variants, see e.g. [55,59,69], which turn LVQ classifiers into
state-of-the-art techniques e.g. in connection to humanoid
robotics or computer vision [16,39]. However, if data are inher-
ently non-Euclidean, these techniques cannot be applied. Begin-
ning with the pioneering work by Bezdek [7,31,30], median and
relational variants of vector quantization are applied in unsuper-
vised learning for clustering and data compression. Recently, these
approaches were reconsidered for clustering relational and
ordered dissimilarity data [32,38]. Other newer approaches also
use semi-supervised techniques [21,23]. A more theoretically
motivated work on learning dissimilarity data is [70]. Here the
data sample relations are represented in terms of dissimilarity
functions and respective conditions are studied.

An extension of LVQ type learning by means of an implicit
embedding in pseudo-Euclidean space has been proposed suppos-
ing the prototypes to be linear combinations of the data points
[24]. Even though yielding state-of-the-art results, this technique
faces two problems: it cannot be used for asymmetric dissimila-
rities where no pseudo-Euclidean embedding exists; by represent-
ing prototypes in terms of distributed coefficient vectors,
interpretability, one of the LVQ's main benefits is lost.

In this contribution, we address these problems by taking an
alternative point of view: we consider LVQ-algorithms as exemplar
based learners suitable for arbitrary dissimilarities. In particular,
we start from three different variants of LVQ, where the exemplars
are also denoted as prototypes: the first LVQ-variant with an
underlying cost function denoted as generalized LVQ (GLVQ, [57]),
the robust soft LVQ (RSLVQ, [64]) and the Soft Nearest Prototype
Classifier (SNPC, [64]). The GLVQ cost function is based on the
approximation of the classification error generating a classification
model maximizing the hypothesis margin but not being generative
in the above sense. Otherwise, RSLVQ and SNPC are probabilistic
supervised generative models with the additional discriminative
power depending on their ability to represent a suitably nonlinear
and possibly complicated decision boundary. Often, these two
features, the generative and discriminative ability of the classifier,

are taken into account in separate steps only, e.g. training a
generative model individually on each given class and, afterwards,
incorporating the supervised label information as side information
for the adaptation of only a few model parameters for better
classification performance, such as e.g. metric parameters [10,18].
The previously mentioned approaches try to incorporate both
aspects [49,25]. Unfortunately, these methods have not been
extended to general dissimilarity data, where we do not assume
an underlying Euclidean metric. Thus, the focus of this paper is to
close this gap.

The paper is structured as follows: First we briefly introduce
the algorithms GLVQ, RSLVQ, and SNPC as cost function based
variants of the original heuristic LVQ assuming vectorial data.
Thereafter we propose the respective median variants requiring
only dissimilarities between the data to be known. After present-
ing the mathematical theory, we compare the performance of
these approaches on benchmark data. A bio-medical research
application in the area of veterinary medicine demonstrates the
abilities of these classifier models for real world problems.

2. Variants of Kohonen's learning vector quantization

Learning vector quantization comprises a family of prototype
based vector quantizers for classification of vectorial data, which are
trained to minimize the classification error [40,41]. For this purpose
each data class is represented by at least one prototype vector. After
learning, unknown data points are classified according to the class
of the closest prototype. The closest prototype is determined
according to the used dissimilarity measure. In the original standard
variants LVQ1...LVQ3 this is the Euclidean distance. These variants,
however, are trained according to heuristic optimization schemes
based on stochastic data presentation. During training the proto-
types are updated depending on vector shifts.

2.1. Generalized learning vector quantization - GLVQ

The GLVQ algorithm is a generalization of the heuristic learning
schemes [13,26,62]. It approximates the classification error by a
differentiable cost function such that gradient descent learning
becomes available [57].

Letx; e X,i=1,..,N, be the data points to be learned and ¢; € 6,
j=1,..,M, be the prototypes. Further, let c(-) be the formal class
label function, which assigns to each data point the class label
¥; = c(x;). Analogously, ¢; = c(¢;) returns the predefined class label
of the prototype. We introduce the distances d* (x;) and d ™~ (x;) as

d*(x)=_ min d(x;,0;) 2.1)
1051 = )

d™ (x) = wg}i#ncj)d(x,v, o)) (2.2)

describing the minimal distances from x; to the closest prototype
of the same class (correct) and to closest prototype of any other
class (incorrect), respectively. These quantities determine the
classifier function

d”(x)—d" x)

d* (x)+d~ (x) @3

/’ta(xi) =
with u, (%) el,=[—1+a,1+a]. For a=0, the classifier function
u,(x;)) becomes negative if d* (x;) >d~ (x;) is valid, i.e. data point
would be incorrectly classified. A value a0 would shift this
decision boundary as well as the interval I,. Sato and Yamada
defined the cost function of GLVQ to be minimized by stochastic
gradient descent learning as
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