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a b s t r a c t

Due to intuitive training algorithms and model representation, prototype-based models are popular in
settings where on-line learning and model interpretability play a major role. In such cases, a crucial
property of a classifier is not only which class to predict, but also if a reliable decision is possible in the
first place, or whether it is better to reject a decision. While strong theoretical results for optimum reject
options in the case of known probability distributions or estimations thereof are available, there do not
exist well-accepted reject strategies for deterministic prototype-based classifiers. In this contribution,
we present simple and efficient reject options for prototype-based classification, and we evaluate their
performance on artificial and benchmark data sets using the example of learning vector quantization.
We demonstrate that the proposed reject options improve the accuracy in most cases, and their
performance is comparable to an optimal reject option of the Bayes classifier in cases where the latter is
available. Further, we show that the results are comparable to a well established reject option for support
vector machines in cases where learning vector quantization classifiers are suitable for the given
classification task, even providing better results in some cases.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The digitalisation of many domains has turned automated classifi-
cation algorithms into a standard tool in diverse application areas such
as fraud detection, image recognition, and handwritten digit classifica-
tion. Dramatically improved sensor technology and the increasing
availability of high quality digital information carries the promise of
radically new possibilities offered by machine learning technology in
high impact domains such as personalised medicine [1]. In biomedical
applications or safety-related fields, however, a wrong classification can
severely affect the applicability of a classifier. The reliability of a
classification constitutes a critical property of any method used in such
domains [2,3]. In these fields, the reliability of classification results is as
important as the accuracy of a classifier. It is often better to refuse the
classification of a given data point rather than to predict a class with
uncertain assignment [4]. In case of doubt, data can then be analysed
by a human expert or it can be marked for further tests instead of a
direct, uncertain classification.

Due to this demand, there exists an extensive literature of how
to extend classification rules by reject options in an optimum way.
The classical work of Chow [5] formalises the underlying learning
scenario in terms of a loss function where the costs of a reject can

be lower than the costs of a misclassification depending on the
actual circumstances. In such cases, an optimum reject option can
be derived with respect to these costs, provided class probabilities
are known. Since the latter is usually not the case, the approach [6]
studies the setting of plugin-rules for an estimation of the class
probabilities. Consistent rules can be derived provided the prob-
ability estimation is of sufficient quality and no density mass
accumulates in regions of the reject boundary. While providing a
very elegant theoretical framework, the results are not fully
satisfactory for a wide range of applications: first, the technology
requires an estimation of the underlying class probabilities, which
is often difficult in practice. For this reason, many approaches
center around possibilities to reliably estimate class probabilities
from given classifiers such as support vector machines (SVM), see
e.g. the approaches [7,8] for technologies to approximately turn
two-class or multiple-class SVMs, respectively, into fully probabil-
istic models. These methods, however, assign additional computa-
tional burden to the classifier and do not always allow reliable
results. Second, the resulting loss function is no longer convex and
hence its optimisation can become problematic. See e.g. the
approaches [9,10] to approximate the setting by convex loss
functions.

Due to these problems, there has been a strong interest how to
devise reject strategies which can directly be used for a given
(deterministic) classifier. As discussed in the paper [11], there are
two main reasons for an uncertain classification: (i) ambiguous
regions, e.g. points lie near class borders or (ii) outliers which are
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caused by noise in the data or which are examples of a new type that
is not yet represented by the actual model. Based on such considera-
tions, quite a few heuristic reject strategies which capture these causes
have been proposed [11–16].

Prototype-based classification constitutes a powerful machine
learning scheme that has the advantages of an intuitive model
understanding and sparse representation [17], leading to very
interesting results e.g. in the biomedical domain [18]. One of the
most popular examples for a supervised prototype-based model is
offered by learning vector quantisation (LVQ) [19] for multi-class
classification tasks. Due to the representation of models in terms
of prototypes, this approach is particularly suited for on-line scen-
arios [20] or lifelong learning [21]. While classical LVQ models
have been introduced on heuristic grounds, modern variants are
based on cost-function models like generalized LVQ (GLVQ) [22],
or robust soft LVQ (RSLVQ) [23]. This enables a principled treat-
ment to guarantee the generalization performance and learning
convergence of the resulting classifier [24,25]. Interestingly,
prototype-based models provide a particularly efficient framework
to integrate the powerful concept of metric learning such as
presented in the overview [26]. Prototype models offer efficient
metric parametrisation strategies by their decomposition of the
data space into homogeneous receptive fields, see [25,27], for
example. In this contribution, we will focus on different LVQ sch-
emes, and we will investigate different efficient reject strategies
which can be directly combined with classical, powerful LVQ
classifiers.

While probabilistic classification models like Gaussian mixture
models or Bayes classifiers directly provide a reject option based on
their class probabilities, deterministic models such as prototype-based
approaches often do not. Only few methods in the literature addr-
ess prototype-based reject options without estimating probabilities
[14,28,13] thereby lacking a comparison to other well established reject
options. Common approaches for rejection usually rely on an estima-
tion of class probabilities on top of a classifier to enable an optimum
rejection following the approaches [5,6], see e.g. [11,29,30,7,8].

In this contribution we will propose several simple, efficient
prototype-based reject options: we will consider reject options based
on the distance of the point to the classification boundary, based on
the indication of the point being an outlier, a combination of both, as
well as a simple direct measurement inspired by the GLVQ cost
function, which we will dub ‘relative similarity’. In addition, we will
consider the behaviour of the probabilistic model RSLVQ together with
an optimum reject as specified by probabilistic plugin-rules. We will
compare their performance to the optimal reject option of the Bayes
classifier in a case where the latter is available. Further, we will
compare their performance to a well established reject option of the
support vector machine (SVM) [7,8]. We will demonstrate that the
proposed reject options can have the same performance and even
provide better results in some cases. In particular, the relative
similarity seems an excellent compromise between a reliable reject
measurement and its efficient computation.

2. Prototype-based classification

We are interested in classification scenarios in Rn with Z classes,
enumerated as f1;…; Zg. Prototype-based classifiers are defined as
follows: a set W of prototypes ðwj; cðwjÞÞARn � f1;…; Zg,
jAf1;…;wg is specified which should represent the data and its
underlying classes in a proper way. Every prototype w is equipped
with a class label cðwÞ. Then, given a new data point, the winner
takes all scheme (WTA) that is used for classification

cðxÞ ¼ cðwlÞ with l¼ arg min
wj AW

dðwj; xÞ ð1Þ

where d is a distance measure, often the standard Euclidean distance.
Hence the closest prototype wl, the winner, determines the class
label of a new data point x; it is also called the best matching unit
(BMU). Training aims at an optimum determination of prototype
locations given a set X of training data ðxi; yiÞARn � f1;…; Zg.

Note that prototype-based models are very similar to k-nearest
neighbour [31] (k-NN) classifiers due to their strong dependency
on similarity calculations. A k-NN classifier simply stores all
training points as ‘prototypes’ and predicts a label according to
the closest (k¼1) or the k closest units. In contrast, prototype-
based training models aim at a sparser representation of data by a
predefined number of prototypes. Training techniques can be
divided into methods which are based on heuristics or alternatives
which are derived from an explicit cost function. Original LVQ as
proposed by Kohonen relies on the heuristic Hebbian learning
paradigm [19], for example, with surprisingly good results in
typical model situations, see [32].

Here, we will focus on extensions of LVQ which are derived
from explicit cost functions such as generalized LVQ (GLVQ) [22]
and robust soft LVQ (RSLVQ) [23]. These techniques have the
advantage that convergence guarantees directly follow from their
derivation. Further, an extension to more complex scenarios such
as powerful metric adaptation is directly possible based on the
formal objective function [25], the generalized matrix LVQ
(GMLVQ). In addition to the local version of the GMLVQ, the
LGMLVQ [25] is used in one experiment. This algorithm uses one
local metric per prototype.

2.1. GLVQ and GMLVQ and its local version

Sato and Yamada [22] generalize the LVQ rule based on the
formalisation as cost minimisation with the cost function

E¼
X
i

Φ
dþ ðxiÞ�d� ðxiÞ
dþ ðxiÞþd� ðxiÞ

� �
: ð2Þ

The resulting model is dubbed generalised LVQ (GLVQ). The
function Φ has to be monotonic increasing, e.g. the logistic
function. d7 is the distance to the closest prototype w7 of the
correct/incorrect class for a data point xi. GLVQ optimizes the
location of prototypes by means of a stochastic gradient descent
based on this cost function (2), see e.g. [33] for a proof of its
validity at the boundaries of receptive fields. A generalization of
GLVQ towards an algorithm with metric adaptation has been
published under the acronym GMLVQ [25], which is a short hand
notation for generalized matrix LVQ. This takes into account
a positive semi-definite matrix Λ in the general quadratic
form which replaces the metric d of the GLVQ, i.e. dðwj; xÞ ¼
ðx�wjÞTΛðx�wjÞ. The local version, the LGMLVQ, uses a single
metric djðwj; xÞ ¼ ðx�wjÞTΛjðx�wjÞ for each prototype wj.

The cost function (2) strongly correlates to the classification error
since a data point is classified correctly iff the nominator of the cost
function is smaller than zero. Further, the nominator can be linked to
the hypothesis margin of the classifier which influences its general-
ization ability [25]. Note that the value of the fraction ranges in the
interval (�1,1) with �1 indicating a certain classification because dþ

is much smaller than d� . Due to its excellent performance in practice
[34], we will consider a reject option related to these costs in the
following.

2.2. RSLVQ

Robust soft learning vector quantization [23] is based on the
assumption of a Gaussian mixture model with labelled types. Training
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