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a b s t r a c t

A novel dual-task learning approach based on recurrent neural networks with factored tensor
components for system identification tasks is presented. The goal is to identify the dynamics of a
system given few observations which are augmented by auxiliary data from a similar system. The
problem is motivated by real-world use cases and a mathematical problem description is given. Further,
our proposed model—the factored tensor recurrent neural network (FTRNN)—and two alternative
models are introduced which are benchmarked on the cart-pole and mountain car simulations. We
show that the FTRNN consistently and significantly outperformed the competing models in accuracy and
data-efficiency.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of complex technical systems such as gas or wind
turbines can be approximated by data-driven models, e.g. recurrent
neural networks [1]. Such methods have proven to be powerful
alternatives to analytical models which are not always available or
inaccurate [2]. Fitting the parameters to data generally requires large
amounts of operational data. However, data is a scarce resource in
many applications, hence, data efficient procedures utilizing all
available data are preferred. Being able to obtain a model of a
dynamical system is useful for a variety of purposes, e.g. condition
monitoring and model-based control. The following real-world sce-
nario is one among many that motivated the research pres-
ented in this paper.

Consider an industrial plant that is subject to modifications over
time. During normal operation, the system behavior is observed and a
simulation model is trained from the collected data. As a consequence
of the modifications, the plant's dynamical properties change thereby
invalidating the available model. However, an accurate model is
needed as soon as possible after recommissioning the plant. Given
that the overall plant remains largely the same, no fundamental
changes of the general structure and complexity of the dynamics are

expected. Therefore, information collected prior to the plant modifica-
tions can be exploited to learn a new model with significantly fewer
data from the modified plant, compared to learning a new model
from scratch.

The question of how to share or transfer knowledge among
multiple learning tasks dates back at least almost two decades [3].
An early work presents evidence that multi-task learning may be
superior to learning multiple individual tasks separately [4]. Sign-
ificant research has been conducted since to explore methods
allowing to transfer knowledge in various ways across domains,
typically to alleviate the lack of labeled data in a target domain by
exploiting prior knowledge from a relevant source domain. In [5]
this field of research was surveyed by identifying and formalizing
different kinds of approaches and naming related applications. In
particular, the authors distinguish multi-task and transfer learning
as follows: “[…] transfer learning aims to extract the knowledge
from one or more source tasks and applies the knowledge to a
target task. In contrast to multitask learning, rather than learning
all of the source and target tasks simultaneously, transfer learning
cares most about the target task. The roles of the source and target
tasks are no longer symmetric in transfer learning.” Prominent
applications of transfer learning, that have attracted much atten-
tion in recent years, are vision, acoustics or natural language
which require learning good representations of the typically
high-dimensional data for further processing. In supervised learn-
ing tasks only relatively few labels of a target task are available
which motivated researchers to investigate into transfer learning
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approaches to share representation across multiple tasks using
unsupervised methods, e.g. [6,7]. To the best of our knowledge, we
are the first to explore multi-task learning approaches for system
identification tasks using recurrent neural networks (RNN) in the
context of the above introduced problem setting. Our data is
typically relatively low-dimensional and structured, e.g. we
observe a system through sensors each measuring a particular
aspect of the system. Hence, we do not face the kind of
representation or feature learning task as it is common with
natural data.

The contributions of this paper comprise the introduction, motiva-
tion, and formal definition of the problem class, the proposition and
discussion of adequate neural network architectures—predominantly
the factored tensor recurrent neural network (FTRNN), which is a
novel architecture in the context of multi-task and transfer learning—
as well as their experimental evaluation using two well-known
benchmarks. In particular, we compare the model errors for the two
benchmarks across a range of data ratios between the source and
target system, and investigate whether the utility of upsampling the
target system data in order to equalize their weight in the combined
error. As a result, the FTRNN outperforms the other models in all
experiments and upsampling is consistently superior to keeping the
original data ratios.

The remainder of the paper is structured as follows. Section 2
contains the formalized problem definition. In Section 3 our FTRNN
approach and alternative methods are presented, that allow us to
share parameters, and thus structure, among the two systems. The
methods are benchmarked with respect to model accuracy and data-
efficiency using the frictionless cart-pole [8,9] and mountain car
simulations [8] in Section 4. Section 5 concludes the results and
outlines future work.

This paper is an extended and revised version of [10] published
upon invitation in this journal.

2. Problem definition

Let I≔f1;2g denote a set of identifiers for fully observable
deterministic systems, which are observed in fixed time intervals
τ and show similar dynamics. A system is defined by the tuple
ðS;A; f iÞ with a state space S, an action space A, and an unknown
state transition function f i : S � A-S describing the temporal
evolution of the state.

Let Di be a set of state transition observations ði; s; a; s0ÞADi of
the i-th system where each observation describes a single state
transition from state sAS to state s0AS caused by action aAA.
Further, let D¼⋃iA IDi denote a data set of size jDj drawn from a
probability distribution D.

Let HDfhjh : S � A-Sg denote a hypothesis space, i.e. a set of
functions that are assumed to approximate the state transition
function fi. Further, let L : S� S-RZ0 denote an error measure
between a predicted successor state ŝ 0 and the true successor state
s0. The optimal hypothesis hn

i , i.e. the best approximation of fi
within the considered space of hypotheses, minimizes the condi-
tional expected error εiðhÞ≔Eðj;s;a;s0 Þ � D½Lðhðs; aÞ; s0Þj j¼ i� where E

denotes the expectation operator, hence, hn

i ¼ arg minhAHεiðhÞ.
Since D is generally unknown, an approximately optimal hypoth-
esis is determined by minimizing the empirical error ε̂DðhÞ≔
1=jDjPð�;s;a;s0 ÞADLðhðs; aÞ; s0Þ induced by a hypothesis hon a data
set D, hence, ĥi ¼ arg minhAH ε̂Di ðhÞ.

Given sufficient data D1, it is expected that jε1ðĥ1Þ�ε1ðhn

1Þjrϵ
for some small positive ϵ. In contrast, assuming the amount of data
D2 is insufficient, jε2ðĥ2Þ�ε2ðhn

2Þjcϵ and ĥ2 may be useless. The
problem addressed in this paper is to develop and assess methods
that yield a better hypothesis of the insufficiently observed system

through dual-task learning in order to utilize auxiliary information
from D1 as prior knowledge of the transition function f2.

Therefore, we redefine the hypothesis space and the empirical
error as follows. Let H0Dfhjh : I � S� A-Sg denote an extended
hypothesis space, which includes the system identifier into the
product space of arguments and thus approximates both trans-
ition functions by a single function. Further, let ε̂ 0

DðhÞ≔
1=jDjPði;s;a;s0 ÞADwiLðhði; s; aÞ; s0Þ denote the empirical error of a
hypothesis hAH0 with the system specific error weight wi. If the
empirically optimal hypothesis ĥ

0 ¼ arg minhAH0 ε̂ 0DðhÞ (D¼⋃iA IDi)
yields a smaller expected error than ĥ2, i.e. ε2ðĥ

0
2Þoε2ðĥ2Þ with

ĥ
0
2ðs; aÞ≔ĥ

0ð2; s; aÞ, information from the well observed system was
successfully utilized in the hypothesis search to find a better
hypothesis of f2 despite few data.

3. System identification with RNNs

In general, the state transition function of a fully observable
deterministic dynamical system is described by some function
stþ1 ¼ f ðst ; atÞ. However, in practice the learning process of this
function often benefits from predicting the sequence of successor
states stþ1;…; stþT given a trajectory of T actions at ;…; atþT�1 for
TAN, TZ2, time steps instead of predicting only a single step. For
instance, if a system is observed at a high frequency, two subsequently
observed states are typically very similar and a single step model
would achieve low error by simply learning the identity function of
the input state. In contrast, predicting a T-step trajectory will yield a
large error for such a degenerate model thus forcing the learning
process to find a better solution.

Let nu and nv denote the dimensionality of layer u and v in a
neural network. Further, let WvuARnv�nu be the weight matrix
from layer u to layer v, bvARnv be the bias vector of layer v and
ϕð�Þ be an elementwise nonlinear function, e.g. tanhð�Þ.

Recurrent neural networks (RNNs) are powerful models for
sequence modeling tasks. In contrast to feedforward neural networks,
RNNs process their input vectors, x1;…; xT , xtARnx , sequentially
thereby taking its sequential structure directly into account. The input
sequence is mapped to a hidden state sequence h1;…;hT , htARnh ,
from which the output sequence ŷ1;…; ŷT , ytARny is computed.
Notation is slightly abused by overloading the variable h to describe
the hidden state of an RNN as well as a hypothesis. A simple RNN is
defined recursively for t ¼ 1;…; T by the following equations:

h0 ¼ hinit ð1aÞ

ht ¼ϕhðWhxxtþWhhht�1þbhÞ ð1bÞ

ŷt ¼ϕyðWyhhtþbyÞ ð1cÞ
with some initial state hinitARnx .

3.1. RNN and naïve RNN

In the context of modeling the dynamics of an open, fully
observable system, a recurrent neural network may be defined by
the following equations:

h1 ¼ϕhðWhss1þb1Þ ð2aÞ

htþ1 ¼ϕhðWhaatþWhhhtþbhÞ ð2bÞ

ŝtþ1 ¼ϕsðWshhtþ1þbsÞ: ð2cÞ
The initial state s1 is mapped to the hidden state of the RNN by a
linear transformation followed by the nonlinear function ϕhð�Þ. The
state space of a dynamical system is often real-valued and unbou-
nded, hence, ϕsð�Þ becomes the identity function. Fig. 1b depicts a
graphical representation of the RNN architecture.
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