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a b s t r a c t

Ensemble models can achieve more accurate and robust predictions than single learners. A selective
ensemble may further improve the predictions by selecting a subset of the models from the entire
ensemble, based on a quality criterion. We consider reinforcement learning ensembles, where the
members are artificial neural networks. In this context, we extensively evaluate a recently introduced
algorithm for ensemble subset selection in reinforcement learning scenarios. The aim of the learning
strategy is to select members whose weak decisions are compensated by strong decisions for collected
states. The correctness of a decision is determined by the Bellman error. In our empirical evaluations, we
compare the benchmark performances of the full ensembles and the selective ensembles in generalized
maze and in SZ-Tetris. Both are large state environments. We found that while the selective ensembles
have a small number of agents, they significantly outperform the large ensembles. We therefore
conclude that selecting an informative subset of many agents may be more efficient than training single
agents or full ensembles.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reinforcement Learning (RL) methods [1] offer an elegant way
to learn to take the best action by trial-and-error in a Markov
Decision Process. In this work, we focus on large state space
environments with both a discrete set of states and actions. The
environments are stationary and stochastic. For learning the state
or state–action values in large state spaces, we consider Multi-
Layer Perceptrons (MLP) for the function approximation (FA) of the
values. From the RL methods, we focus on model-free methods,
where the models are learned by step-wise interaction with the
environment. The values are updated on-policy, i.e. with the state–
action pairs or the states that an agent observed by following the
policy.

Whereas ensemble or committee-based models have been
successfully applied to supervised [2,3], semi-supervised and
active learning [4–6], in RL not much research has been done to
combine agents in a committee. One of the first attempts was done
in [7], where fitted Q iteration used ensembles of regression trees.
In [8], values learned from different RL algorithms were combined
in joint decisions. However, Q-Learning single learners seemed to
outperform committees in the more difficult problems. Ref. [9]

combined the Q-values of multiple neural networks, trained by the
Neural Fitted Q-iteration (NFQ) algorithm. While NFQ is known to
be applicable for large state spaces, they empirically evaluated
their ensembles on the simple pole balancing problem with large
neural networks (4-layer up to 10-layer MLPs) with some success.
In another work [10,11], it has been analytically shown that a
committee with joint decisions, with estimated values from agents
with FA, can perform more rewarding decisions than a single
agent. Each agent was trained by the same RL method. An RL
committee benefits from the diversities on the value estimations,
both from unstable value estimators and from large state spaces.
Empirical evaluations with SZ-Tetris and generalized maze con-
firmed the analytical results [10].

In a selective ensemble, an informative subset is taken of a
large ensemble with the aim of performing better predictions. In
[12], this was done for both classification and regression. Later on,
unlabelled data were included to improve the performance of a
selective ensemble [13]. In [14], we recently described a method to
select an informative subset of agents from a full ensemble with
the aim to achieve more accurate value estimations. To our
knowledge, this was the first attempt to combine selective
ensemble learning and RL.

1.1. Contribution

Our contribution in this paper is an extensive evaluation of the
full ensembles [10] and the selective ensembles [14] in RL. In the
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following, the neural network ensembles refer to the full ensem-
bles, and the selective neural network ensembles refer to the
selective ensembles. As for the full ensembles, we do not include
the ensembles with joint decisions in the learning phase, see [10].
In the same reference, an overview and a comparison of the non-
selective ensembles in RL can be found. The key difference
between our work in [10], the full ensembles, and the related
works is that we consider RL and function approximation as a
general tool in the ensemble methods. In contrast, in [8], different
RL methods were combined and in [9], deep network architectures
were utilized for performance improvements in comparably sim-
ple RL problems (basic maze and pole balancing). We evaluate
empirically the full ensembles and the selective ensembles on the
generalized maze and on SZ-Tetris. Compared to our work in [14],
we further elaborate the analysis of the objective function of the
proposed method. In the experiments, we additionally train the
single agent by the Temporal-Difference with gradient correction
(TDC) method [15,16]. Furthermore, we increased the size of the
validation set for the generalized maze.

1.2. Outline

The outline of this paper is as follows. First, we summarize the
neural network ensembles in Section 2. Second, we introduce and
discuss the error function of the selective neural network ensem-
bles in Section 2.1. The errors, used in the objective function, are
defined in Section 2.2. In Section 3, we describe our performed
experiments and empirically evaluate the neural network ensem-
bles and the selective neural network ensembles on two large
state environments. The results for the first environment, general-
ized maze, are in Section 3.1 and the results for the second
environment, SZ-Tetris, are in Section 3.2. The paper ends with a
conclusion.

2. Preliminaries

Given is a set D¼ fA1;A2;…;AMg of M agents. Each agent is
represented by an FA with weights θm and trained through some
RL method, including Value Iteration, Temporal-Difference (TD) or
Monte-Carlo. In this work, we focus on MLPs as FA and on the
model-free methods. Each agent in D is trained by the same RL
method. After the training of T iterations or episodes, the perfor-
mance of these M agents is tested, keeping their weights fixed.
From now on this is called simulation phase, benchmark or testing
in contrast to the training phase, where the agents learn and
update their weights. In the simulation phase, the agents can act
as a committee and perform joint decisions. The Joint Average
policy is

ΠAV ðsÞ ¼ arg max
aAAðsÞ

X
mAD

Qθm
ðs; aÞ

" #
ð1Þ

where s is the current observed state, AðsÞ is a discrete set of
actions available in state s and Qθm ðs; aÞ is the estimated value of
agent m. Further, the Joint Majority Voting policy is

ΠVOðsÞ ¼ arg max
aAAðsÞ

X
mAD

Nmðs; aÞ
" #

ð2Þ

where Nmðs; aÞ is one if agentm votes for action a in state s, else zero.
In contrast to this, an agent that is acting outside a committee per-
forms single decisions. The Single policy for an agent m is

ΠmðsÞ ¼ arg max
aAAðsÞ

Qθm
ðs; aÞ� � ð3Þ

An ensemble with all agents from set D is called a full ensemble. Such
an ensemble can achieve more accurate value estimations than the

single agents. Mainly, this is due to the diversities on the value
estimations, both from unstable value estimators and from large
state spaces. As the value estimations contribute to the decisions, it
follows that more accurate value estimations result in more accurate
decisions. In a control problem, an agent tries to maximize its total
reward. With more accurate decisions, the committees can get higher
total rewards than the single agents. The total reward is the sum of
the discounted rewards received until the end of the episode.

2.1. Selective neural network ensembles

Out of the set D with agent indices of a large ensemble, we can
select a subset ~D �D, j ~D j ¼ ~M , by minimizing the following
objective function:

EðxÞ ¼
X
sAS

p̂ðsÞ
X
mAD

xm
X

aAAðsÞ
αmðs; aÞemðs; aÞ

" #d

ð4Þ

under the constraints
P

mADxm ¼ ~M , xmAf0;1g, 8m, where S is a
discrete set of states, p̂ðsÞ is the probability to observe the state s, α
is a weighting function with

P
aAAðsÞαmðs; aÞ ¼ 1; 8s; 8m,

emðs; aÞZ0 is a bounded real-valued error of agent m for state–
action pair (s,a), dZ1 is the degree and x are the variables. Both p̂
and α are error weighting functions. With the weights from p̂, the
errors are weighted according to the occurrences of the states.
Specifically, states that are more likely observed have a higher
weight and, thus, are credited more in the objective function than
rarely observed states. The weighting function α depends on the
joint decisions and is described in Section 2.2. With d¼1, the value
of Eq. (4) is the sum of the weighted errors of the individual
agents. From this it follows that the lowest value of Eq. (4), with
d¼1, is reached by selecting ~M agents with the independently
summed lowest errors. On the other hand, in this case, the
relations of the errors between the agents are not considered.
This may lead to situations where predominantly similar agents, in
terms of similar errors, are selected. As we prefer to have varied
agents, we set d¼2. With d¼2, Eq. (4) can be reformulated as a
constrained binary quadratic programming (BQP) problem:

EðxÞ ¼ xTBx ð5Þ
under the same linear constraints as for (4) and with

Bij ¼
X
sAS

p̂ðsÞ
X

aAAðsÞ
αiðs; aÞeiðs; aÞ

X
aAAðsÞ

αjðs; aÞejðs; aÞ
" #

ð6Þ

Note that (5) is equivalent to (4). Solving the problem exactly
requires a linearization of the problem as done in [17]. Unfortu-
nately, these strategies are computationally expensive for large
vector sizes of the variables. Thus, we approximately solve the
problem by solving a quadratic programming problem with box
constraints (QP-BOX):

EðwÞ ¼wTBw ð7Þ
under the constraints

P
mADwm ¼ ~M , wmAR, 1rwmr0, 8m and

with B defined as in (6). Here, B is a positive-definite matrix, as
each entry in the matrix is the result of an inner product andP

aAAðsÞαiðs; aÞeiðs; aÞZ0, 8 i, by definition. Thus, the objective
functions (4), (5) and (7) are convex functions. From this it follows
that a local minimum for (7) is also a global minimum. Further, we
can conclude that the problem of minimizing the quadratic
function with QP-BOX is P, due to the convex objective function,
while with BQP the problem is NP-hard. The difference between
the two approaches is that QP-BOX allows for partially selecting
the agents, while BQP selects the agents fully. Fortunately, the
square function penalizes larger variables more than smaller
variables and, thus, the solutions with variables close to zero are
preferred. In contrast, the sum of the variables must be ~M and,
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