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a b s t r a c t

The electric multiple unit (EMU) is a complex system running in dynamic environments. Satisfaction on
real-time manual operation strategy of the EMU with respect to the multi-objective operation demands,
including security, punctuality, accurate train parking, energy saving and ride comfort, depends on the
drivers' experience and a given V–S curve (velocity versus position curve). To improve the operation
strategy, a multi-objective optimization model of EMU operation is developed on the basis of dynamic
analysis and speed restriction mutation. Using a modified particle swarm optimization algorithm, a
Pareto optimal solution set is obtained by the online optimization of the EMU's operation strategy.
Finally, according to the preference order ranking, an optimal operation strategy is sorted out from the
Pareto set which satisfies the multi-objective requirements in real time. Experimental results on the field
data of CRH380AL (China's railway high-speed EMU type-380AL) demonstrate the effectiveness of the
proposed approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Electric Multiple Unit (EMU) provides passenger transport
services in a complex and dynamic running environment. Since the
services should simultaneously satisfy the multi-objective require-
ments of security, punctuality, accurate train parking, energy saving
and ride comfort, how to optimize the EMU operation strategy is a
multi-objective optimization problem (MOP). The objective of the
MOP is to obtain satisfying operation strategies which can meet the
multi-objective requirements from numerous operational approaches
[1,2]. On the other hand, stochastic and paroxysmal changes in the
environment, such as natural hazards or equipment failure of the
railroads, lead to speed restriction mutation (SRM). Obviously, SRM
causes many difficulties in solving the MOP of the EMU operation
[3,4]. Moreover, the intense interaction effects among the EMUs
caused by their high-density tracking arouse a higher requirement
for the real-time performance of EMU operation. Further, as the
automatic EMU operation has been a development tendency, it is
critical that the operation strategies are totally reliable [5,6]. Conse-
quently, the operation strategies of EMU not only should meet the
multi-objective requirements, but also have real-time effectiveness.

In previous optimization research on EMU operation, energy
consumption and punctuality were primarily considered as the
optimization indexes. However, the requirements of accurate train
parking and ride comfort, which are closely related with the security
and quality of the transport services, were largely ignored. Further-
more, most of the previous studies were carried out offline. Aiming to
address the optimization problem of EMU operation, an optimization
model based on the optimization index of energy consumption was
built in [7,15], while the other indexes are handled as constraints.
However, they ignored the multi-objective requirements of the
problem. A multi-objective model was established in [1], which
considered the optimization indexes of energy saving, punctuality
and accurate train parking after which a hybrid particle swarm
optimization algorithm (PSO) was employed to optimize the operation
strategies. Unfortunately, they adopted the weighted sum method to
aggregate these optimization indexes into a single index, which
sacrifices the balance and flexibility of optimization results. A multi-
objective optimization model based on the indexes of punctuality,
accurate train parking, energy saving and ride comfort was established
in [8]. A modified differential evolution algorithm was adopted to
solve the MOP of EMU operation in an off-line optimal way, so as to
obtain the Pareto optimal solutions. However, there was no guarantee
of the validity of their results in a dynamic environment.

It is well know that the multi-objective PSO (MOPSO) can
efficiently obtain a Pareto solution set of the MOP, as well as be
suitable for solving the MOP of EMU operation [9]. Considering the
challenge of multi-objective planning of urban land-use, the MOPSO
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algorithm was adopted to optimize the arrangement of urban land
uses in [10], and a Pareto set of land-use arrangements were
obtained. Although their experimental results met the multi-
objective requirements well, the efficiency of the MOPSO algorithm
was lower as a result of the growing population. Fortunately, this
problem can usually be solved by using reference points or
preference information to guide the particles to a certain region
of the Pareto Front [11,12]. For instance, the important relationship
between objectives was used as preference information about the
MOPSO algorithm in [12], and the effectiveness of the method was
improved greatly.

In this paper, a multi-objective online optimization model is
established, which based on the indexes of security, punctuality,
accurate train parking, energy saving and ride comfort. Subse-
quently, the multi-objective online optimization of the EMU
operation is realized by a modified MOPSO algorithm, which based
on real-time data on the running process of EMU. Finally, based on
the principle of balance and the preference order ranking, the
optimal strategy is sorted out from the Pareto set.

The remainder of this paper is organized as follows: Section 2
briefly describes the dynamic analysis of the EMU. The multi-
objective online optimization model and method of EMU opera-
tion are given in Sections 3 and 4, respectively. The experimental
results and discussions are provided in Section 5. Finally, conclu-
sions and future work are given in Section 6.

2. Dynamic model of the EMU running process

Fig. 1 describes the force acting on EMUs during the running
process.

Based on the force analysis in Fig. 1, the dynamic model of the
EMU's running process is established, as shown in the following
equation [13]:

C ¼ u�w

w¼w0þwj

w0 ¼ aþbyþcy2

wj ¼wiþwrþws

8>>>><
>>>>:

ð1Þ

where C is the resultant force, u is the controlling force, and u40
refers to traction (Ft) while uo0 refers to braking force (Fb);w is the
running resistance, which is composed of the basic resistance w0

and the additional resistance wj. Moreover, wj mainly includes ramp
resistance wi, curve resistance wr and tunnel resistance ws; a, b, c
are the drag coefficients [14].

Based on Eq. (1), the dynamics of EMU can be defined as
follows:

dt
dl

¼ 1
v

v
dv
dl

¼ uðc; vÞ�wðl; vÞ

8>><
>>: ð2Þ

where lA ½0; L0� is the location of EMU, L0 is the station spacing, t is
the running time of EMU; vA ½0;VðlÞÞ is the running speed of EMU,
V(l) is the automatic train protection speed restriction (SR) at the
location l. cAf1;0; �1g is the operation state of EMU, and “1, 0,

�1” refers to the operation state of traction, coasting and braking,
respectively; uðc; vÞ and wðl; vÞ are the same as Eq. (1).

3. Multi-objective online optimization model for EMU
operation

As mentioned above, the optimization of the EMU operation is a
MOP, which should simultaneously meet the multi-objective require-
ments in a dynamic running environment. Therefore, a multiple-
objective online optimization model (MOOM) is built to provide a
quantitative basis for the study.

3.1. Optimization indexes of EMU operation

Accordingly, the optimization indexes for the MOP of the EMU
operation, which include safety allowance, punctuality, energy
consumption, accurate train parking and ride comfort, are detailed
in Sections 3.1.1–3.1.5.

3.1.1. Safety allowance index
The safety allowance of the EMU running process is usually

evaluated by the difference between the speed of the EMU and the
SR [7,15]. Since the SR changes with changes in the running
environment, the SR data are obtained from the driver machine
interface (DMI) of the EMU in each sampling period dt. In this way,
the calculation model of the safety allowance is established in real
time, which is defined as follows:

f v ¼
1

VðlÞ�v
ð3Þ

where V(l) and v are the same as Eq. (2), fv is the safety allowance
index for the operation strategy. Obviously, the smaller the fv is,
the safer the running process of EMU becomes.

3.1.2. Punctuality index
The services provided by the EMU are strictly limited by the

train timetable [7,15]. Accordingly, the difference between T (the
actual inter-station running times of the EMU) and T0 (the given
time in the timetable) is taken as the punctuality index, which is
defined as follows:

T ¼
XN
1

dt; N¼ 1;2;…;K ð4Þ

f t ¼ T�T0 ð5Þ
where dt is the sampling period and k is iterations during the
optimization process. The smaller the ft is, the more punctual the
services be.

3.1.3. Energy consumption index
The calculation of the energy consumed in traction is a basis for

the optimization of the operation strategy. The energy consump-
tion is closely related to the conditions of railway line, the EMU's
traction characteristics and operation strategies and so on. Thus, in
the case that the traction characteristics and line conditions are
fixed, the objective of energy saving could be realized by optimiz-
ing the operation strategy. However, since the running EMU is a
complex nonlinear system, it is difficult to directly calculate the
energy consumed in traction of its running process. Consequently,
the running process of the EMU is divided into numerous linear
intervals. The traction energy of each interval and the whole
section is shown in the following equations, respectively
[16,17,22]:

Ei ¼ FðvÞ dSðv; dtÞ ð6Þ

uw
jw 0w

Running direction

Fig. 1. Force analysis of the EMU's running process.
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