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a b s t r a c t

We propose a novel method, modularity embedding, to embed high-dimensional data or graphs in a
low-dimensional space. Central to our work is a model that quantifies the relationship of two data points
by their pairwise modular value. A larger value indicates a higher chance that they should be placed near
to each other, and vice versa. The objective function of the model has a simple formulation of minimizing
the sum of squared distances between data points weighted by pairwise modular values. It is naturally
relaxed as a semi-definite program that learns a low-rank kernel matrix with only one linear constraint,
which can be solved efficiently by modern mathematical optimization solvers. Compared with tradi-
tional graph embedding algorithms, the proposed method is shown to be able to highlight cluster
structures inherent in high-dimensional data and graphs, which provides a promising tool in data
analysis applications.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Clustering refers to the task of grouping a set of objects such
that objects in the same group are more similar to each other than
to those in different groups. As a common technique for statistical
data analysis, it has been studied and used in many fields [24,15].
Different approaches need to be developed to reveal the under-
lying cluster relationship for different types of data. In this work,
we are particularly interested in the cluster structures of high-
dimensional data, which has attracted much recent research
attention. High-dimensional data, with anywhere from tens to
thousands or even millions of features, are often encountered in a
variety of applications like videos, images, texts and complex
networks. Being hard to think in and impossible to visualize, the
high dimensionality poses significant difficulties and challenges to
modern data processing research [18].

As a treatment to this “curse of dimensionality”, dimensionality
reduction techniques have been investigated during the past
decades, particularly in areas of statistics, neural networks,
machine learning and computing sciences. These techniques try
to reduce the number of random variables under consideration
with the assumption that high-dimensional data have an intrinsic
dimension that is significantly lower than the number of features
they appear to have. Common techniques include principal com-
ponent analysis and metric multi-dimensional scaling [16,9].
The two classical linear methods project the data from a high-
dimensional space into a low-dimensional subspace by either

maximizing the projected variance or best preserving the pairwise
squared distance among the data.

Besides linear methods, much research on nonlinear techni-
ques has been devoted. Well-known methods include self-
organizing map, generative topographic map and related [17,3].
These methods can be regarded as a type of neural networks that
is trained using unsupervised learning to produce a low-
dimensional representation of the input space of the samples,
which have been successfully applied in many challenging tasks
[4].

More recent work of nonlinear techniques focuses on graph
embedding methods. These embedding methods build upon but go
beyond the classical linear solutions. They assume that the data are
from a low-dimensional manifold that is embedded in a high-
dimensional space, which is more general than the assumption of
subspace by linear methods. The methods often start from building a
sparse connectivity graph describing local relationship between each
data point and its neighbors. The graph serves as an approximation to
the underlying data manifold. With the graph, a compact representa-
tion of the data in a low-dimensional space can be obtained in
different ways [8,2,11,33,28–31]. These methods differ in preserving
different signatures of the underlying manifold, such as the geodesic
distances between inputs and the local combination angles. These
distinct features make the embedding algorithms applicable in differ-
ent domains.

In this paper, we develop a novel embedding method for analysis
of high-dimensional data and graphs. Compared with existing
approaches, the proposed method tries to find a low-dimensional
depiction of graphs with the objective of highlighting inherent cluster
structures by moving intra-cluster points together, and pushing inter-
cluster points apart. In empirical evaluation, we found that the method
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often produces separation of clusters far more evident than other
methods.

From a computational point of view, the objective function of
the proposed model can be naturally relaxed and solved by a semi-
definite program with a linear constraint, which provides an
effective and efficient solution. Such a formulation is also flexible
in incorporating prior knowledge which can often be expressed as
linear equality or inequality constraints.

The paper is organized as follows: we briefly review the
necessary background on semi-definite programming, which plays
an important role to the success of the proposed model. Then we
illustrate the modularity embedding model in detail. Finally we
report our empirical evaluation of the method with promising
results and conclude the work.

2. Background on semi-definite programming

Semi-definite programming (SDP) is a relatively new field which
is of growing interest, and dramatic advances have been made
recently [25,32]. SDP deals with convex optimization problems over
symmetric positive semi-definite matrix variables with linear
objective function and linear constraints. It may be regarded as an
extension of, but much more general than, linear programming.

Denote by Sn the space of all n� n real symmetric matrices,
equipped with the inner product X;Yh i ¼ trðXTYÞ ¼ Pn

i;j ¼ 1 xijyij,
where xij and yij denote the i; jð Þth element of matrices X and Y
respectively. A matrix X in Sn is positive semi-definite if all its
eigenvalues are nonnegative; we write X≽0. For given matrices
A;A1;…;Am in Sn, SDP optimizes problems of the type

max tr ATX
� �

ð1Þ

subject to

tr AT
i X

� �
¼ ci; i¼ 1;2;…;m

X≽0

in variables XASn.
SDP has a particular structure that makes its solution compu-

tationally tractable by interior-point and related methods [5,7],
and the optimal solution can be approximated to arbitrary preci-
sion. It is now used in a host of applications, including relaxation
of combinatorial optimizations and machine learning problems
[13,19,34,33].

3. Modularity embedding

3.1. Model

For an undirected graph G¼ V ; Eð Þ, where V ¼ v1;…; vnf g is a set
of vertices and E is a set of edges connecting pairs of vertices in V.
Let wij be an element of the adjacency matrix W of the graph,
which gives the number of edges between vertices vi and vj. We
further denote mi ¼

P
jwij as the degree of vi and m¼ 1

2

P
imi as the

total edge number.
Our proposed work is based on the notion of “modularity” in

the study of complex networks [26]. Assume that the degree mi

associated with each vertex vi is preserved. Therefore under
uniform random selection, the expected number of edges between
vertices vi and vj is mimj=2m. A value

bij ¼wij�
mimj

2m

gives the observed number of edges minus the expected number
of edges between vertices vi and vj. In this paper, we refer to this

value, bij, as the pairwise modular value between vertices vi and vj.
It is positive if the edge weight between vertices vi and vj is larger
than the expected weight between them. It is zero or negative
otherwise. Thus the value quantifies a kind of affinity between the
two vertices. A larger bij suggests a stronger connection between
the two vertices and a higher chance that they are in the same
cluster, and vice versa.

An n� n square matrix B with all elements bij
� �

is called a
modularity matrix [26]. It has a nice property. All row values and
all column values of the matrix sum to zero, i.e.,X
j

bij ¼ 0; for all i ð2Þ

andX
i

bij ¼ 0; for all j: ð3Þ

Our work wishes to find a low-dimensional embedding of the
graph G such that the cluster structure is highlighted. Considering
the close relationship between the vertices' cluster membership
and their pairwise modular values, this goal can be achieved by
placing two vertices near to each other if their pairwise modular
value is large, and pushing them far away otherwise. Mathemati-
cally it can be expressed as minimizing the sum of squared
distances between data points weighted by their pairwise modular
values, which is formulated by a modularity embedding model with
the following objective:

min
X

X
ij

bij � ℓ xi; xj
� � ð4Þ

subject to a normalization constraint:X
i

xTi xi ¼ n: ð5Þ

Here X ¼ x1;…; xn½ � is a d� n matrix, where xi gives the coordinate
of the vertex vi in a space with given dimension d and ℓ xi; xj

� �
is

the squared Euclidean distance between xi and xj.

3.2. SDP relaxation

The model formulated in Eq. (4) can be relaxed and solved by a
semi-definite program. Note that ℓ xi; xj

� �¼ xTi xiþxTj xj�2xTi xj, the
optimization objective becomes
X
ij

bij � xTi xiþxTj xj�2xTi xj
� �

¼
X
i

xTi xi
X
j

bijþ
X
j

xTj xj
X
i

bij�2
X
ij

bijx
T
i xj

¼ �2
X
ij

bijxTi xj

The last “¼” holds due to the properties in Eqs. (2) and (3).
Let S¼ XTX, which implicitly enforces a constraint on positive

semi-definiteness of S, a constraint on the trace tr Sð Þ ¼ n which
comes from the normalization constraint in Eq. (5) and a con-
straint on the rank rank Sð Þ ¼ d. Subject to these constraints, our
objective can be written equivalently as the maximization of
trðBTSÞ.

The rank constraint on S makes this problem generally hard to
solve. Here we point out without proof that with the constraint a
special case of our optimization problem becomes an NP-hard
binary partition problem discussed in [6]. Fortunately, there is a
simple relaxation heuristic that is usually found effective in
practice. We go on with the optimization by neglecting the rank
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