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a b s t r a c t

Recent trends in human–computer interaction (HCI) show a development towards cognitive technical
systems (CTS) to provide natural and efficient operating principles. To do so, a CTS has to rely on data
from multiple sensors which must be processed and combined by fusion algorithms. Furthermore,
additional sources of knowledge have to be integrated, to put the observations made into the correct
context. Research in this field often focuses on optimizing the performance of the individual algorithms,
rather than reflecting the requirements of CTS. This paper presents the information fusion principles in
CTS architectures we developed for Companion Technologies. Combination of information generally goes
along with the level of abstractness, time granularity and robustness, such that large CTS architectures
must perform fusion gradually on different levels — starting from sensor-based recognitions to highly
abstract logical inferences. In our CTS application we sectioned information fusion approaches into three
categories: perception-level fusion, knowledge-based fusion and application-level fusion. For each
category, we introduce examples of characteristic algorithms. In addition, we provide a detailed protocol
on the implementation performed in order to study the interplay of the developed algorithms.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Modern computer systems are designed to improve on effi-
ciency and user experience by dynamically adapting to situations,
incorporating additional knowledge and enhancing the interac-
tion. These features are realized by enabling the computer to
perceive its environment, to extract relevant information and
to compare this to previously acquired data. In the literature

cognitive technical systems (CTS) are known as Companion
Systems. State-of-the-art systems available on the market claim
to provide these kinds of features, however they are still far below
their possible potential, mostly due to the demanding information
processing required [1,2].

Perception in a CTS can be divided into three major categories
which are virtually omnipresent in any given human–computer
interaction (HCI) setting: (1) the implicit user input [3] (e.g.
emotion or disposition [4]); (2) the explicit user input (e.g. multi-
modal instructions by gesture and speech); and (3) the recognition
of the user's environment as well as the context of use [5] (e.g.
activities, state and manipulation of objects nearby). It must be
emphasized that necessary perceptions usually strongly depend
on the application at hand. Therefore, it is always important to
identify the relevant and application-specific perceptions in a first
step. In case of emotions, useful classes are not necessarily the
most obvious ones, e.g. happiness or anger. In fact, to improve an
interaction it is more beneficial to focus on negative user
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dispositions being directly related to the system, like boredom or
stress [2].

1.1. Fusion categories in cognitive technical systems

In CTS, the problems often arise from the endeavor to develop
architectures which implement multiple requirements simultaneously.
The perception of classes, especially of the second and the third
category, is encumbered by the open world scenario in which unusual
events may occur and classes often have a wide range of variability.
This perception problem can be addressed by enriching the recognition
approach with additional domain knowledge. However, what appears
to be a straightforward solution entails many open research questions.
The most important one is How to realize a seamless integration of
symbolic and sub-symbolic information, also with respect of how to
exchange information in both directions, i.e. from sensory to high-level
representations and back. Furthermore, it is not sufficient that these
algorithms perform well on convenient pre-segmented datasets but
have to provide good results in real-time in ubiquitous applications. In
turn, more requirements arise: how to (1) compensate sensor failures;
(2) draw information from the temporal dimension; (3) take uncer-
tainty into account; and (4) deal with the openworld setting. However,
the problems mentioned so far only address the perceptive periphery.
Another central issue represents the combination of the uncertain
perceptions with symbolic domain knowledge. The combination is
crucial to enhance the recognition results and to bring them into the
correct context. The integration of domain knowledge is also inevitable,
since the recording of datasets covering all possible observations is
usually infeasible.

In addition, the inferred classes are typically more abstract, which
is helpful to create a truly relevant user history and which in turn is
necessary to carry out a reasonable interaction. Indeed, the concept of
combining explicit user inputs with knowledge about the ongoing and
past behavioral patterns of the user bears another challenge. In a first
step, an abstract input representation has to be derived from inputs of
multiple modalities which then has to be combined with available
knowledge, the dialog management and the application. In other
words, an algorithm has to mediate between the user's input, acquired
knowledge (possibly afflicted with uncertainty), goal priorities, and
the interface provided by the application.

In the last instance, the CTS's fission component has to reason
about how to provide a situation and input dependent output based
on an abstract representation of the core system. The presented work
addresses these challenges and shows ways how it is possible to solve
them by taking advantages from information fusion methods.

Shifting the view from outer requirements to the characteris-
tics of information, it becomes evident that the processing can be
grouped into different stages. Fig. 1 exemplifies the stages and how
the information is condensed by fusion. Algorithms close to the

sensory usually recognize patterns which are directly observable
in the scene, e.g. the presence or the identification and attributes
of a person [6,7]. By adding spatial and temporal context, more
meaningful classes can be derived, e.g. recognizing activities or the
mood of a person [8,4]. In the next layer, relationship of entities
can be taken into account, e.g. persons with respect to each other
or connection between a person and objects [9]. Again, a large
history of observations can allow the discovery of more complex
attitudes and salient events. Ultimately, this kind of high-level
information is of relevance for the application and interaction. We
regard the decisions based on the high-level information as the
last step of fusion. The requirements and characteristics motivate
the partitioning of the fusion algorithms and architectures into
these categories: perception-level fusion, knowledge-based fusion
and application-level fusion. The new taxonomy will be used
throughout the paper as an aid to orientation and explained in
greater detail in the corresponding sections.

1.2. Architecture of cognitive technical systems

An alternative view on CTS is to take a closer look at its architecture
design. The systematical decomposition of a CTS architecture is
depicted in Fig. 2. The schema shows the exchange of information
between the user and the system, where the red arrows represent the
input and the blue arrows the output of the system. Basically, the
system itself is organized in two basic blocks: (1) peripheral block
consisting of the user interface and perception component; and (2) an
inner block consisting of a knowledge model and associated compo-
nents such as planning, ontologies and the application and dialog
management itself.

The red input arrow in the lower right, which is leading into the
perception component of the first basic block, represents the recog-
nizers perceiving the environment and the intrinsic user state. The
multimodal inputs, e.g. video cameras or microphones, are mapped to
classes by the perception component. In case one class is recognized
by multiple modalities, the perception-level fusion combines them to
a single output. The perception component is connected to the
knowledge model, not only to derive more sophisticated information
but also to enhance the perception by back-propagating beliefs. This is
achieved by the knowledge-base fusion, represented by the lower bi-
directional arrow. On the upper right red and blue arrows represent
the input and the output of the system, respectively. The commands,
which are combined and interpreted by the user interface, are, if
necessary, forwarded to the inner basic block which then adapts the
knowledge model and planning accordingly. The bi-directional arrows
in the system show that in the ideal case information is exchanged in
both directions in a seamless manner. Therefore, the bi-directional
arrows represent not only the fusion of information but also fission

Fig. 1. Information fusion in CTS grouped into three layers: perception-level fusion,
knowledge-based fusion and application-level fusion. The higher the layer of fusion,
the more abstract the derived and processed knowledge. The procedure is usually
accompanied with an increase of the temporal granularity and the variability of the
occurrences covered.

Fig. 2. Architecture design of a CTS. The CTS perceives two kinds of input, namely
the implicit input (lower arrow) and the explicit input (upper arrow). Within the
CTS, the information needs to be processed gradually with respect to the temporal
granularity, the level of abstractness and uncertainty in order to allow a robust
extraction. (For interpretation of the references to color in the text, the reader is
referred to the web version of this paper.)
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