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a b s t r a c t

Sparseness is a key problem in modeling problems. To sparsify the solution of normal least squares
support vector regression (LSSVR), a novel sparse method is proposed in this paper, which recruits
support vectors sequentially by virtue of Householder transformation, here HSLSSVR for short. In
HSLSSVR, there are two benefits. On one hand, a recursive strategy is adopted to solve the linear
equation set instead of solving it from scratch. During each iteration, the training sample incurring the
maximum reduction on the residuals is recruited as support vector. On the other hand, in the process of
solving the linear equation set, its condition number does not deteriorate, so the numerical stability is
guaranteed. The reports from experiments on benchmark data sets and a real-world mechanical system
to calculate the inverse dynamics of a robot arm demonstrate the effectiveness and feasibility of the
proposed HSLSSVR.

& 2015 Elsevier B.V. All rights reserved.

1. Motivation

In the past two decades, support vector machine (SVM) [1–4]
has been widely studied and applied due to its excellent perfor-
mance on classification, regression and probability density estima-
tion. As a member of SVM family, since least square support vector
machine (LSSVM) [5,6] was proposed, it has drawn much attention
due to its simple format and fast training speed. That is, LSSVM
only needs to solve a set of linear equations compared to the
quadratic programming in the normal SVM, so the training burden
is cut down obviously. In the regression case, there is correspond-
ing least square support vector machine (LSSVR) to solve function
approximation problems. However, compared to the normal SVM,
LSSVM/LSSVR is in lack of sparseness [7]. Sparse models are
preferable in engineering applications since a model's computa-
tional complexity scales with its model complexity. Moreover, a
sparse model is easier to interpret from the viewpoint of knowl-
edge extraction [8]. Hence, a lot of efforts have been made to
sparsify the solution of LSSVM/LSSVR.

Firstly, Suykens et al. [9] investigated imposing sparseness on
LSSVM by pruning support values (PSVLSSVM) from the sorted
support value spectrum which results from the solution to the linear
equation. Different from omitting samples that has a small error in

the previous pass [9], De Kruif et al. [10] introduced a procedure in
which the training sample introducing smallest approximation error
when it is omitted will be pruned, i.e., pruning error minimization in
LSSVM (PEMLSSVM). Subsequently, Kuh et al. [11] accelerated
PEMLSSVM by adding the regularization. Zeng et al. [12] introduced
the sequential minimal optimization method into pruning process,
instead of determining the pruning samples by errors, which omits
the samples that will introduce minimum changes to a dual objective
function. Combined with the reduced technique [13,14], reduced
LSSVR (RLSSVR) is also of sparseness. To sparsify the solution of
LSSVM, a fast sparse approximation (FSALSSVM) was proposed [15],
which iteratively builds the decision function by adding one basis
function from a kernel-based dictionary at one time. By adding the
bias term to the objective function, LSSVM can be sparsified with
forward least squares approximation [16]. Based on the Nyström
approximation and quadratic Rényi entropy, a fixed-size LSSVM
(FSLSSVM) was proposed to realize the sparse representation in
primal weight space and applied successfully to electric load fore-
casting [17–19]. As we know, LSSVR boils down to solving a set of
linear equations. If we are able to sparsify this linear equation set in
the least square sense, then a sparse LSSVR is obtained equivalently.
Hence, in this paper, Householder transformation [20,21] is used to
orthogonalize this linear equation set and recruit so-called support
vectors sequentially, thus obtaining a sparse solution. Naturally, this
proposed algorithm is named Householder transformation based
sparse LSSVR (HSLSSVR for short). To confirm the effectiveness and
feasibility of the proposed HSLSSVR, ten benchmark data sets and a
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real-world mechanical system are utilized to do experiments. From
these reports, it is easily got that HSLSSVR is effective and feasible.

The remainder of this paper is organized as follows. In Section 2,
the normal least square support vector regression is briefly intro-
duced and its drawback on lack of sparseness is pointed out. In the
following section, to sparsify the solution of normal LSSVR, HSLSSVR
is elaborated on and its detailed procedure is listed. The experimental
results and analyses are presented in Section 4. Finally, conclusions
are given in Section 5.

2. Least squares support vector regression

Considering a training set of l pairs of samples fðxi;diÞgli ¼ 1 for
regression problem, where xiARn is the input vector and diAR is
the corresponding prediction value, hence LSSVR model [5,6] is
described in the following:

min
w;b;ξ

1
2
wTwþC

2

Xl
i ¼ 1

ξ2i

( )

s:t: di ¼wTφðxiÞþbþξi; i¼ 1;…; l ð1Þ
where w is the weighted vector of the model, ξ¼ ½ξ1;…; ξl�T is the
residual vector, φðxiÞ is a nonlinear mapping which can maps xi in
the original space into a high-dimensional feature space, C is the
regularization parameter which makes a tradeoff between the
model complexity and the fitting errors, b is the learning bias.
From (1), the Lagrangian function is found as

Lðw; b; ξ;αÞ ¼ 1
2
wTwþC

2

Xl
i ¼ 1

ξ2i þ
Xl
i ¼ 1

αiðdi�wTφðxiÞ�b�ξiÞ ð2Þ

where α¼ ½α1;…;αl�T is the Lagrangian multiplier vector.
The optimal conditions are got as
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Eliminating w and ξi ði¼ 1;…; lÞ from Eqs. (3a)–(3d), the following
system of linear equations is got

0 1T

1 KþI=C

" #
~b
~α

" #
¼ 0

d

� �
ð4Þ

where d¼ ½di;…; dl�T , 1 is a column vector of all ones with
appropriate dimension, I is an identity matrix of appropriate
dimension, the elements of the kernel matrix K are determined
by K ij ¼φðxiÞTφðxjÞ ¼ kðxi; xjÞ, here kð�; �Þ represents the kernel
function.

The Lagrangian multipliers ~α i ði¼ 1;…; lÞ and the bias ~b are got
through solving Eq. (4), so the LSSVR model is obtained as

f LSSVRðxÞ ¼
Xl
i ¼ 1

~α ikðxi; xÞþ ~b ð5Þ

From Eq. (3c), it is easily understood that the Lagrangian
multiplier ~α i is in direct proportion to the residual error ξi. Hence,
if ξia0, ~α i will not equal zero. Generally speaking, it is very
difficult that ξi is exactly equal to zero, so almost every ~α ia0. In
other words, almost every training sample is support vector in
LSSVR. Since LSSVR has a dense solution, the real time in the
testing phase will be impaired. Commonly, engineers prefer sparse

models to dense ones, because sparse models usually signify less
computational complexity and faster responses. Therefore, it is
necessary and important to develop methods of sparsifying the
solution of LSSVR.

3. Sparsify LSSVR based on Householder transformation

3.1. Householder transformation

Given a column vector y, it can be transformed into the
following form in an isometric mapping mode using Householder
transformation [20,21]:

Hy¼ �signðyiÞJyJei ð6Þ
where ei is the ith column of identity matrix, J � J represents the
Euclidean norm, yi is the ith element of y,

signðyiÞ ¼
1; yiZ0
�1; yio0

(
ð7Þ

and H is a Householder matrix satisfying

H ¼ I�2
vvT

vTv
ð8Þ

with

v¼ yþsignðyiÞJyJei ð9Þ
From Eq. (8), it is easily known that if H is a Householder matrix, it
satisfies the following properties:

(1) Symmetric: H ¼HT

(2) Unitary: H�1 ¼HT

(3) Involutory: H2 ¼ I

3.2. Sparsify the solution of LSSVR

HSLSSVR is a sequential forward greedy algorithm, which starts
with no support vectors and gradually recruits one support vector
at each iteration until the stopping criterion is satisfied. In
HSLSSVR, two key components must be solved: the recruitment
of support vectors and the solution of subproblem. Assume that at
the ðn�1Þth iteration, there are ðn�1Þ training samples recruited
as support vectors, i.e., fxi j iASg, where S is the index set of
support vectors. In this situation, Eq. (4) is rearranged as

0 1T
j Sj

1l K S

" #
~b
ðn�1Þ
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S

2
4

3
5¼ 0

d

� �
ð10Þ

where 1T
j Sj include jSj ones, here j � j represents the cardinality of

set, similarly 1l includes l ones, K S ¼ ½k i;…;k j�ði; jASÞ with
k i ¼ kiþei=C, ki is the column vector of the kernel matrix K
corresponding to the index i, ~α ðn�1Þ

S is a subvector consisting of
elements confining to the index set S at the ðn�1Þth iteration.
Evidently, Eq. (10) is an overdetermined linear equation set. Its
solution in the least square sense amounts to the optimal solution
of the following problem:

min
bðn� 1Þ ;αðn� 1Þ

S

Gðn�1Þ
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It is easily got the optimal solution of (11) as
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