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a b s t r a c t

The varying coefficient regression model has received a great deal of attention as an important tool for
modeling the dynamic changes of regression coefficients in the social and natural sciences. Lots of efforts
have been devoted to develop effective estimation methods for such regression model. In this paper we
propose a method for fitting the varying coefficient regression model using the least squares support
vector regression technique, which analyzes the dynamic relation between a response and a group of
covariates. We also consider a generalized cross validation method for choosing the hyperparameters
which affect the performance of the proposed method. We provide a method for estimating the
confidence intervals of coefficient functions. The proposed method is evaluated through simulation and
real example studies.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The varying coefficient model introduced by [4] is flexible and
powerful for modeling the dynamic changes of regression coeffi-
cients. The varying coefficient model is a useful extension of the
classical linear model. In this model, the regression coefficients are
not set to be constants but are allowed to change smoothly with the
value of other covariates. The varying coefficient model inherits
simplicity and easy interpretation of the classical linear models. This
model is gaining its popularity in statistics literature in recent years.
The introductions, various applications and current research areas of
the varying coefficient model can be found in [4,5,3,11]. Many areas
of applied statistics have become aware of the problem of estimating
varying coefficients and analyzing them appropriately. A great deal of
attention has been focused on the problem of estimating the varying
coefficients. Most of this attention has been paid to using the kernel
smoothing technique. Fan and Zhang [3] give an excellent review
of the varying coefficient models and discuss three approaches in
estimating the coefficient function: kernel smoothing, polynomial
splines and smoothing splines. Recently, some more flexible varying
coefficient models have been developed and discussed. See, for
example, [19,8,6,7,18].

There are some possibilities in building the varying coefficient
model. One is to let all regression coefficients be functions of a
single covariate or a single vector of covariates. Another is to let
each regression coefficient be function of different covariates.
There are various extensions of models. See [11] for details. Most
literature has centered around the case that all regression coeffi-
cients are functions of a single vector of covariates. In this paper
we consider this model. The desire to estimate the coefficients
nonparametrically leads to the subject of this paper. In this paper
we propose a method for fitting the varying coefficient model by
utilizing least squares support vector regression (LS-SVR) techni-
que, which can be applied effectively to high-dimensional case.
From now on this method will be simply called VC-LS-SVR. This
is the first paper utilizes the idea of LS-SVR or support vector
machine (SVM) for the varying coefficient model. The SVM, first
developed by [16] and his group at AT& T Bell Laboratories, has
been successfully applied to a number of real world problems
related to classification and regression problems. Least squares
SVM (LS-SVM) is least squares version of SVM and was initially
introduced by [14]. LS-SVM has been proved to be a very appealing
and promising method [14,15]. There are some strong points of
LS-SVM. Here we will consider three of them. One is that LS-SVM
uses the linear equation which is simple to solve and good for
computational time saving. Another is that LS-SVM makes the
model selection easier by using the generalized cross validation
(GCV) function. The other is that LS-SVM enables to construct an
approximate pointwise confidence interval for the true regression
function.
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The rest of this paper is organized as follows. Section 2 proposes
VC-LS-SVR method and also presents a GCV technique in order to
choose the hyperparameters in the proposed method. Section 3
describes a method for estimating the confidence intervals of
coefficient functions. Sections 4 and 5 present numerical studies
and conclusion, respectively.

2. VC-LS-SVR and model selection

In this section we illustrate the VC-LS-SVR method and its
model selection. The underlying idea of the VC-LS-SVR method is
that the true mean specification is approximated by a combination
of linear LS-SVR and nonlinear feature mapping function of the
univariate or multivariate smoothing variable.

2.1. VC-LS-SVR

Given the training data set D¼ fðui; xi; yiÞgni ¼ 1 with each
smoothing vector uiARdu , covariate vector xiARdx and the
response yiAR, we consider the following varying coefficient
linear model:

yi ¼ f ðui; xiÞþσðui; xiÞϵi ¼ β0ðuiÞþ
Xdx
j ¼ 1

βjðuiÞxijþσðui; xiÞϵi; ð1Þ

where xij is the jth component of xi, βjð�Þ’s are unknown coefficient
functions, VarðyiÞ ¼ σ2ðui; xiÞ40 and ϵi's are i.i.d. random variables
with mean 0 and variance 1. The varying coefficient model is
flexible in that the responses are linearly associated with a set of
covariates, but their regression coefficients can vary with smooth-
ing vector u.

For the varying coefficient model (1) we now assume that βjðuiÞ
for j¼ 0;1;…; dx is nonlinearly related to the smoothing vector ui

such that βjðuiÞ ¼wt
jϕðuiÞþbj, where wj is a corresponding weight

vector of dimension dh to ϕðuiÞ, and ϕ is the nonlinear feature
mapping function which maps the input space to the higher
dimensional feature space where the dimension dh is defined in
an implicit way. An inner product in feature space has an
equivalent kernel in input space, Kðui;ujÞ ¼ϕðuiÞtϕðujÞ, provided
certain conditions hold [10]. Several choices of the kernel function
are possible. Two popular choices of kernel function in practice are
Gaussian kernel and polynomial kernel of degree d defined,
respectively, as

Kðui;ujÞ ¼ exp �‖ui�uj‖2=2κ
� �

;

Kðui;ujÞ ¼ ð1þut
iujÞd; i; j¼ 1;…;n;

where κ40 and d are prespecified kernel parameters. Then, the
regression function f ð�Þ of the model (1) can be rewritten as

f ðui; xiÞ ¼wt
0ϕðuiÞþb0þ

Xdx
j ¼ 1

xij wt
jϕðuiÞþbj

� �
:

Using the basic idea of LS-SVR we can define the optimization
problem:

min
wj ;bj ;e

J ¼ 1
2

Xdx
j ¼ 0

‖wj‖2þ
γ
2

Xn
i ¼ 1

e2i

subject to the equality constraints

yi ¼wt
0ϕðuiÞþb0þ

Xdx
j ¼ 1

xij wt
jϕðuiÞþbj

� �
þei; i¼ 1;…;n;

where γ is the regularization parameter and ei's are i.i.d. ran-
dom variables with mean 0 and VarðeÞo1. We construct the

Lagrangian

L¼ J �
Xn
i ¼ 1

αi wt
0ϕðuiÞþb0þ

Xdx
j ¼ 1

xij wt
jϕðuiÞþbj

� �
þei�yi

0@ 1A;

where αi's are the Lagrange multipliers. Then, the Karush–Kuhn–
Tucker conditions for optimality are given by

∂L
∂w0

¼ 0-w0 ¼
Xn
i ¼ 1

αiϕðuiÞ

∂L
∂wj

¼ 0-wj ¼
Xn
i ¼ 1

αixijϕðuiÞ; j¼ 1;…; dx;

∂L
∂b0

¼ 0-
Xn
i ¼ 1

αi ¼ 0;

∂L
∂bj

¼ 0-
Xn
i ¼ 1

αixij ¼ 0; j¼ 1;…; dx

∂L
∂ei

¼ 0-ei ¼
1
γ
αi; i¼ 1;…;n;

∂L
∂αi

¼ 0-wt
0ϕðuiÞþb0þ

Xdx
j ¼ 1

xij wt
jϕðuiÞþbj

� �
þei�yi; i¼ 1;…;n:

After eliminating ei's, w0 and wj’s, we have the optimal values of
αi's, b0 and bj's are obtained from the linear equation as follows:

KþXXt � Kþ1
γIn 1n X

1t
n 0 0t

dx

Xt 0dx Odx

0BB@
1CCA

α
b0
b

0B@
1CA¼

y
0
0dx

0B@
1CA;

where X ¼ ðx1;…; xnÞt , α¼ ðα1;…;αnÞt , b¼ ðb1;…; bdx Þt , y¼ ðy1;…
; ynÞt , Im and Om, respectively, denote the identity and zero
matrices of dimension m, 1m and 0m, respectively, denote the
vectors of ones and zeros of dimension m, K is the n� n kernel
matrix with elements Kij ¼ Kðui;ujÞ, and � denotes a component-
wise multiplication.

For a point ðuo; xoÞ the VC-LS-SVR method for coefficient
functions estimation takes the form:

β̂0ðuoÞ ¼
Xn
i ¼ 1

Kðuo;uiÞα̂ iþ b̂0;

β̂ jðuoÞ ¼
Xn
i ¼ 1

xijKðuo;uiÞα̂ iþ b̂j; j¼ 1;…; dx;

and then for regression function estimation takes the form:

f̂ ðuo; xoÞ ¼
Xn
i ¼ 1

Kðuo;uiÞα̂ iþ b̂0þ
Xn
i ¼ 1

Xdx
j ¼ 1

xojxijKðuo;uiÞα̂ iþ
Xdx
j ¼ 1

xojb̂j:

ð2Þ
We remark that ðuo; xoÞ could be an observation in the training
data set D or a new observation.

2.2. Model selection

We now consider the model selection problem which deter-
mines the appropriate hyperparameters of the proposed VC-LS-
SVR method. The functional structure of the VC-LS-SVR method is
characterized by hyperparameters such as the regularization
parameter γ and the kernel parameter κ or d. To choose the values
of hyperparameters of the VC-LS-SVR method we first need to
consider the cross validation (CV) function as follows:

CVðλÞ ¼ 1
n

Xn
i ¼ 1

yi� f̂
ð� iÞðui; xi jλÞ

� �2

;

where λ is the set of hyperparameters, and f̂
ð� iÞðxi jλÞ is the

regression function estimated without ith observation.
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