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a b s t r a c t

In this paper, the stability of complex-valued neural networks with probabilistic time-varying delays is
investigated. Two important integral inequalities that include Jensen's inequality as a special case are
developed. By constructing proper Lyapunov–Krasovskii functional and employing inequality technique,
several delay-distribution-dependent sufficient conditions are obtained to guarantee the global
asymptotic and exponential stability of the addressed neural networks. These conditions are expressed
in terms of complex-valued LMIs, which can be checked numerically using the effective YALMIP toolbox
in MATLAB. An example with simulations is given to show the effectiveness of the obtained results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few decades, neural networks have been widely
studied due to their extensive applications in pattern recognition,
associative memory, signal processing, image processing, smart
antenna arrays, combinatorial optimization, and other areas [1]. In
implementation of neural networks, however, time delays are
unavoidably encountered [2]. It has been found that the existence
of time delays often causes undesirable dynamic behaviors such as
performance degradation, oscillation, or even instability of the
systems [3]. Therefore, stability analysis of neural networks with
time delays has received much attention, for example, see [3–7]
and references therein.

As an extension of real-valued neural networks, complex-valued
neural networks with complex-valued state, output, connection
weight, and activation function become strongly desired because of
their practical applications in physical systems dealing with electro-
magnetic, light, ultrasonic, and quantum waves [8]. In fact, complex-
valued neural networks (CVNN) make it possible to solve some
problems which cannot be solved with their real-valued counterparts.
For example, the XOR problem and the detection of symmetry

problem cannot be solved with a single real-valued neuron, but they
can be solved with a single complex-valued neuron with the ortho-
gonal decision boundaries, which reveals the potent computational
power of complex-valued neurons [9].

In real-valued neural networks the activation functions are chosen
to be smooth and bounded. In CVNN, if we choose an activation
function to be smooth and bounded, then according to Liouville's
theorem it will reduce to a constant. Therefore the choice of an
activation function is the main challenge in CVNN. For different types
of activation functions we need different approaches to study the
relevant neural networks, which are quite different from those used
for real-valued recurrent neural networks.

Recently, there have been some researches on the stability of
various CVNN, for example, see [9–19] and references therein. In
[9], authors proposed a CVNN and supposed that its weight matrix
was Hermitian with nonnegative diagonal entries in order to
preserve the stability of the network. And a computational energy
function was introduced and evaluated in order to prove network
stability for asynchronous dynamics. In [10], author weakened the
assumption on weight matrix in [9], and derived a new stability
condition. In [11], authors investigated the boundedness and
complete stability of CVNN with constant delay, where the activa-
tion functions were chosen as f ðzÞ ¼maxð0;ReðzÞÞþ imaxð0; ImðzÞÞ.
In [12,13], a class of discrete-time recurrent neural networks were
discussed, several sufficient conditions for stability of a unique
equilibrium were obtained. In [14,15], the authors investigated the
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asymptotical stability and exponential stability for two types of
CVNN with constant delay, where the activation functions either
can be separated into their real and imaginary parts or satisfy the
Lipschitz continuity condition in the complex domain. In [16,17],
the asymptotical stability of CVNN with constant delay was
investigated, where the activation functions can be expressed by
separating their real and imaginary parts. In [18], authors con-
sidered a CVNN with time-varying delays and unbounded dis-
tributed delays whose activation functions can be expressed by
separating their real and imaginary parts. In [19], when the
activation functions satisfy the Lipschitz continuity condition in
the complex domain, the asymptotical stability of CVNN with
constant delay was studied.

It can be seen from the existing references that when investigating
CVNN only the deterministic time-delay case was concerned, and the
stability criteria were derived based only on the information of
variation range of the time delay. As pointed out in [20], the time
delay in some neural networks is often existent in a stochastic fashion,
and its probabilistic characteristic, such as Poisson distribution or
normal distribution, can often be obtained by statistical methods. It
often occurs in real systems that some values of the delay are very large
but the probabilities of the delay taking such large values are very
small. In this case, if only the variation range of time delay is employed
to derive the criteria, the obtained results may be somewhat more
conservative [21–25]. Hence, research on neural network with prob-
abilistic time-varying delays has both theory meaning and value of
application. Recently, stability analysis of real-valued neural networks
with probabilistic time-varying delays has been discussed, and some
results related to this problem have been published, for example, see
[26–29] and references therein. However, to the best of the author's
knowledge, very few results on the problem of CVNNwith probabilistic
time-varying delays have been studied in the literature. This motivates
our present research.

Motivated by the above discussions, the objective of this paper is to
study the stability of CVNN with probabilistic time-varying delays. By
employing a new Lyapunov–Krasovskii functional candidate and using
matrix inequality technique, we obtain several sufficient conditions for
checking the global asymptotic and exponential stability of CVNNwith
probabilistic time-varying delays.

Notations: The notations are quite standard. Throughout this
paper, I represents the unitary matrix with appropriate dimen-
sions; C, Cn and Cn�m denote, respectively, the set of all complex
numbers, the set of all n-dimensional complex-valued vectors and
the set of all n�m complex-valued matrices. An shows the comp-
lex conjugate transpose of complex-valued matrix A. The notation
X4Y means that X and Y are Hermitian matrices, and that X�Y is
positive definite. i shows the imaginary unit, i.e., i¼

ffiffiffiffiffiffiffiffi
�1

p
. For

complex number z¼ xþ iy, the notation j zj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
stands for

the module of z. For complex-valued vector zACn, the notation
JzJ is the Euclidean norm of z. Let ðΩ;F ; fF gtZ0;PÞ be a complete
probability space with a filtration fF gtZ0 satisfying the usual
conditions (i.e., it is right continuous and F 0 contains all P-null
sets). Ef�g stands for the mathematical expectation operator
with respect to the given probability measure P. Denote by
L2F0

ð½� τ;0�;RnÞ the family of all F 0�measurable Cð½�τ;0�;RnÞ�
valued random variables ψ ¼ fψðsÞ : sA ½�τ;0�g such that supsA ½� τ;0�
Efjψ ðsÞj go1. Matrices, if not explicitly specified, are assumed to
have compatible dimensions.

2. Model description and preliminaries

In this paper, we consider the following CVNN with probabil-
istic time-varying delays:

_zðtÞ ¼ �CzðtÞþAf ðzðtÞÞþBf ðzðt�τðtÞÞÞþ J; ð1Þ

for tZ0, where zðtÞ ¼ ðz1ðtÞ; z2ðtÞ;…; znðtÞÞT ACn, zi(t) is the state of
the ith neuron at time t; f ðzðtÞÞ ¼ ðf 1ðz1ðtÞÞ; f 2ðz2ðtÞÞ;…; f nðznðtÞÞÞT
ACn and f ðzðt�τðtÞÞÞ ¼ ðf 1ðz1ðt�τðtÞÞÞ; f 2ðz2ðt�τðtÞÞÞ;…; f nðznðt�τ
ðtÞÞÞÞT ACn are the vector-valued activation functions without and
with time delays whose elements consist of complex-valued nonli-
near functions; τðtÞ corresponds to the transmission delay; C ¼
diagfc1; c2;…; cngARn�n is the self-feedback connection weight
matrix, where ci40; AACn�n is the connection weight matrix,
BACn�n is the delayed connection weight matrix; JACn is the
input vector.

For a complex-valued neural network, the main challenge is the
choice of activation function. Any regular analytic function cannot
be bounded unless it reduces to a constant. This is known as
Liouville's theorem. That is to say, activation functions in complex-
valued neural networks cannot be both bounded and analytic.
Throughout this paper, we make the following assumptions:

Assumption 1. For any iAf1;2;…;ng, f ið�Þ is continuous and
bounded and there exists a positive diagonal matrix L¼ diagfl1;
l2;…; lng such that

j f iðα1Þ� f iðα2Þjr li jα1�α2 j ð2Þ
for all α1; α2AC.

Assumption 2. τðtÞ is bounded with 0rτ1rτðtÞrτ3, and its prob-
ability distribution can be observed, i.e., suppose τðtÞ takes values
in ½τ1; τ2� or ðτ2; τ3� and ProbfτðtÞA ½τ1; τ2�g ¼ δ0, where τ1rτ2rτ3
and 0rδ0r1.

Remark 1. It is noted that the introduction of binary stochastic
variable was first introduced in [20], and then successfully used in
[21–29]. From Assumption 2, we know that δ0 is dependent on the
values of τ1, τ2 and τ3, and ProbfτðtÞA ðτ2; τ3�g ¼ 1�δ0.

In order to describe the probability distribution of the time
delay, we define two sets

Θ1 ¼ ft j τðtÞA ½τ1; τ2�g; Θ2 ¼ ft j τðtÞA ðτ2; τ3�g ð3Þ
and introduce time-varying delays τ1ðtÞ and τ2ðtÞ such that

τðtÞ ¼
τ1ðtÞ; tAΘ1

τ2ðtÞ; tAΘ2:

(
ð4Þ

It follows from (3) that Θ1 [ Θ2 ¼Rþ and Θ1 \ Θ2 ¼∅. From (4) it
can be seen that tAΘ1 implies the event τðtÞA ½τ1; τ2� occurs and
tAΘ2 implies that the event τðtÞAðτ2; τ3� occurs.

Assumption 3. There are constants μ1, μ2, μ3 and μ4 such that
μ1r _τ1ðtÞrμ2 and μ3r _τ2ðtÞrμ4.

Defining a stochastic variable as

δðtÞ ¼
1; tAΘ1

0; tAΘ2;

(
ð5Þ

then system (1) can be equivalently rewritten as

_zðtÞ ¼ �CzðtÞþAf ðzðtÞÞþδðtÞBf ðzðt�τ1ðtÞÞÞþð1�δðtÞÞBf ðzðt�τ2ðtÞÞÞþ J:

ð6Þ
And the initial condition associated with model (6) is given by
zðsÞ ¼ ϕðsÞ, where ϕðsÞ is continuously differential on sA ½�τ3;0�.

Remark 2. Under Assumption 2 and the definition of δðtÞ, it can be
seen that δðtÞ is a Bernoulli distributed white sequence with
ProbfδðtÞ ¼ 1g ¼ ProbfτðtÞA ½τ1; τ2�g ¼ EfδðtÞg ¼ δ0 and ProbfδðtÞ ¼ 0g
¼ ProbfτðtÞAðτ2; τ3�g ¼ 1�EfδðtÞg ¼ 1�δ0. Furthermore, it can be
shown that Efδ2ðtÞg ¼ δ0, Efð1�δðtÞÞ2g ¼ 1�δ0 and EfδðtÞð1�δ
ðtÞÞg ¼ 0.

The following lemmas are useful in the derivation of the main
result.
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