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a b s t r a c t

Assessment of air pollutant profiles by using measurements involves some limitations in the implementa-
tion. For this, deterministic air quality models are often used. However, its simulation usually needs high
computational requirements due to complex chemical reactions involved. In this paper, a neural network-
based metamodel approach is used in conjunction with a deterministic model and some measured data to
approximate the non-linear ozone concentration relationship. For this, algorithms for performance
enhancement of a radial basis function neural network (RBFNN) are developed. The proposed method is
then applied to estimate the spatial distribution of ozone concentrations in the Sydney basin. The
experimental comparison between the proposed RBFNN algorithm and the conventional RBFNN algorithm
demonstrates the effectiveness and efficiency in estimating the spatial distribution of ozone level.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ozone (O3) is a secondary pollutant gas that is naturally pro-
duced in the earth's atmosphere, produced by the chemical
reaction between nitrogen oxides (NOx, NOx¼NOþNO2) and vola-
tile organic compounds (VOCs) under daytime solar radiation.
Effort has been paid to the problem of reducing the concentration
of ground ozone (also known as tropospheric ozone) that is higher
than the national standard. The reason for this concern is that an
exposure to ozone that exceeds an allowable level may directly
impact human health, causing respiratory problems, heart and
lung diseases, and even premature death. Moreover, a long-term
exposure to high background ozone levels can also affect living
organisms, plant growth and building construction [1,2].

Conceptually, the reaction of ozone is straightforward but the
estimation of its spatial profiles becomes complex when dealing with
the ozone level not at point values but across a region, as its
concentrations are influenced by many factors such as meteorological
and terrain conditions. The highest accuracy in the determination of
spatial distribution would be achieved if fixed measuring stations
could be located at each domain cell. Unfortunately, this is almost

impractically as it would involve a high investment cost. It may be
overcome by using mobile measurement stations [3,4], but this is
generally difficult to be implemented. Therefore, policy makers often
use deterministic air quality models to handle the spatial estimation
task (see, e.g., [5,6]). However, simulations using dispersion models
involve a high computational cost and the prediction results are
much dependent on the correctness of model formulation in the
development stage, as well as the accuracy of emission inventory
data and meteorological data used as inputs.

In air quality modelling, statistical and computational intelligence
techniques can be alternatively implemented to reduce the computa-
tion burden. For example, an online support vector machine (SVM)
was applied to predict air pollutant levels in an advancing time-series
based on the monitored air pollutant data [7]. Other methods such as
neural networks [8] and neuro-fuzzy [9] have also been used for
modelling and control of different air pollutants. A neural network
algorithm has been proposed to retrieve the tropospheric ozone
column from nadir ultraviolet/visible spectroscopy radiance satellite
measurements [10]. From collected stationary information, neural
networks have been successfully applied to predict daily ozone levels,
see, e.g., [11–14], but mainly on a temporal basis. A comparison for
ozone prediction has recently been conducted in [15] to suggest the
outperformance of support vector regression models with polyno-
mial kernel functions over neural networks (feed-forward, time
delay, and radial basis function) in terms of the root mean squared
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error, where input parameters for training these networks were
chosen from available measured air pollutant and meteorological
data without taking into account the spatial distribution of the
pollutants.

In this paper, motivated by the need of a computationally efficient
learning technique to adequately estimate the spatial distribution of air
pollutants using a dispersion model, particularly in dealing with the
complex problem of the spatial distribution of ozone level across a
region, we propose a metamodel with an enhanced radial basis
function neural network (RBFNN) for improvements of the estimation
accuracy. Here, neural networks and the well-adopted air pollution-
chemical transport model are integrated to reduce the complexity of
the spatial predictions and also to improve reliability via verification
with measurement data collected at local monitoring stations. The
contribution of our paper is thus twofold with developments of (i) an
enhanced RBFNN whose centres, network weights and spread para-
meters are selected respectively from the integration of the weighted
least squares, generalised cross validation, and a reasonably small
choice of the standard deviation range, (ii) a metamodel using the
proposed RBFNN to provide improved and reliable estimations of the
ozone concentration profile distributed spatially over a region.

The remainder of this paper is organised as follows. After the
introduction, algorithms for performance enhancement of radial
basis function neural networks are developed. The proposed
metamodel is then applied to the spatial distribution estimation
of ozone as described in Section 3. Section 4 presents the results
and discussion for the case study of the Sydney basin in Australia. A
conclusion is drawn in the final section, followed by an appendix.

2. Development of RBFNN metamodel

The development of computer models that can be useful for
modelling a predefined class of complex systems, or metamodel-
ling, has been subject to intensive research since the last decade. Its
objectives are to reduce the cost, time, and amount of effort
required during the simulation of intricate processes [16]. Substan-
tial results from the existing works illustrate that using metamodels
to locate an optimum solution is often sufficiently accurate in many
applications requiring prediction, optimisation and validation. Data-
driven methods such as kriging [17], splines [18], support vector
regression [19], self-organising maps [20], cluster reinforcement
[21], and neural networks [22] are usual methods for metamodel-
ling in complex system identification and pattern recognition. In
this paper, the RBFNN is adopted, making use of such advantages
[23] as good accuracy, simplicity, high robustness and efficiency,
sample sizes, and capability of dealing with different problem types.

2.1. Overview of radial basis function neural networks

The main architecture of the RBFNN consists of three layers: an
input layer, a single hidden layer, and an output layer. The neurons
in the hidden layer implement a radially activated function to
perform a non-linear transformation of input data to approximate
output data. There are three common forms of basis functions
used in RBFNN, namely Gaussian, multiquadratic and thin plate
spline [24]. The Gaussian one is most popular owing to its
flexibility of adjusting the function position and shape via the
spread parameter. The general output of a Gaussian RBFNN with l
inputs, and m outputs which respond to the input vector xARl is
mathematically represented as

ŷj ¼ f jðxÞ ¼
XN
k ¼ 1

wjkϕkðJx�ck J ;σkÞ; j¼ 1;2;…m; ð1Þ

where j is the output index, wjk are weights in the output layer,
ϕkð�Þ is a basis function, J � J denotes the Euclidean norm, N is the

number of neurons (and centres) in the hidden layer, ckARl is the
network centre in the input vector space, and σk is the spread
parameter for each basis function. With a given number of data
samples, the outputs can be evaluated in correspondence to the
training patterns according to the following equation:

F ¼ΦTW ; ð2Þ
where F is the n�m matrix of the network output, Φ is the N�n
matrix of hidden nodes, W ¼ ½wjk�T is the N�m matrix of network
weights, and n is the number of data samples.

For a Gaussian function based RBFNN, the training algorithm
involves three main parameters to be set in order to minimise a
suitable cost function, namely the centre, the width (i.e., spread),
and the network weights. Training strategies can be grouped into
two classes: fully supervised training (see, e.g., [25]), and two-
stage training (see, e.g., [26]). Supervised training may lead to
optimal estimation of the parameters. However, it typically
involves the gradient descent method [27], which is computation-
ally expensive. For the latter, the first stage involves the determi-
nation of the basis function centres and widths [28], followed by
the determination of the output weights in the next stage [29], or
a generalised technique [30] is used for growing and pruning
radial basis functions.

2.2. Approach for selection of radial basis centres

Among the first methods for the selection of basis centres was
the work introduced in [31], employing the subset of the input
training data selected randomly. In later approaches, the centres
are obtained via a clustering process such as the k-means algo-
rithm or by using the genetic algorithm and fuzzy logic (see, e.g.,
[32,33]). A more systematic way is via the supervised selection or
also known as the forward selection (FS), in which the orthogonal
least square (OLS) algorithm is commonly used [26].

Here, we introduce a basis centre selection method which is the
integration of the FS method proposed in [28] with the weighted least
square (WLS) theory to cope with unequal variances of the observation,
as in the case of meteorological data. Typically, a regression of scattered
large data of complex systems contains non-constant variances across
all data points as of unequal scatter or heteroskedasticity. This is because
some observations are known to be less reliable than others in many
practical applications. To solve the heteroskedasticity problem, the
weighted least squares (WLS) method is more preferable [34] as it
outperforms other methods in the ability to handle regression situations
in which the data points are of varying quality. For example, in [35],
WLS was used to couple with support vector machines to achieve
robust estimation. A two-stage WLS regression approach is proposed in
[36], to estimate the coefficients of autoregressive with exogenous input
models for prediction of hourly cooling-load forecasting with good
performance. In this paper, to improve the learning strategy as described
earlier in [37], a procedure for selection of the network centres is
suggested by considering the regularisation theory, namely regularised
and weighted least squares. Moreover, to deal with the ill-posed
problem, the learning process is accelerated by making use of the Gram
matrix [38]. Apart from that, appropriate ways to estimate several
parameters in RBFNN including the network output weights, the least
squares weighting factor, the regularisation parameter and the spread
parameter are also adopted, in Sections 2.3 and 2.4.

A general objective function for the regularised least squares
[39], with the input matrix A and weighting factors H, takes the
following form:

JðzÞ ¼ JAz�bJ2Hb
þ J ðz�z0ÞJ2Hz

; ð3Þ
where the first term corresponds to the original cost function due
to the residual error between the estimated output, Az, and the
desired output, b, the second term is for regularisation to take into
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