
Adaptive structure radial basis function network model for processes
with operating region migration

D.K. Siong Tok a, Ding-Li Yu a,n, Christian Mathews a, Dong-Ya Zhao b, Quan-Min Zhu c

a Process Control Group, Liverpool John Moores University, Liverpool, UK
b Department of Chemical Industrial Equipment and Control Engineering, College of Chemical Engineering, China University of Petroleum, Qingdao, China
c Department of Engineering, University of West of England, Bristol, UK

a r t i c l e i n f o

Article history:
Received 29 April 2014
Received in revised form
2 December 2014
Accepted 12 December 2014
Communicated by: J. Zhang
Available online 22 December 2014

Keywords:
RBF networks
Neural network model
Adaptive structure network
ROLS algorithm
RBF structure adaptation

a b s t r a c t

An adaptive structure radial basis function (RBF) network model is proposed in this paper to model
nonlinear processes with operating point migration. The recursive orthogonal least squares algorithm
(ROLS) is adopted to select new centers on-line, as well as to train the network weights. Based on the R
matrix in the orthogonal decomposition, an initial center bank is formed and updated in each sample
period. A new learning strategy is proposed to gain information from the new data for network structure
adaptation. A center grouping algorithm is also developed to divide the centers into active and non-
active groups, so that a structure with a smaller size is maintained in the final network model used for
output prediction. The proposed RBF model is evaluated and compared with the three existing adaptive
structure RBF networks by modeling a nonlinear time-varying numerical example. Simulation results
demonstrate that the proposed algorithm has several advantages in term of the adaptive tracking ability
and a better recovery speed over the existing methods during the migration of system's operating point.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The radial basis function network (RBFN) has been successfully
applied as a nonlinear function estimator for dynamical system
modeling due to its simple architecture and online training ability
[1,2]. The RBFN's structures can be classified into two categories:
fixed-structure and adaptive structure. For a fixed-structure RBFN,
the number and location of centers are fixed during the modeling
and operation process and the model parameters (weights) may
be adapted. While, an adaptive structure RBFN has the number
and location of its hidden layer neurons adapted to better fit the
dynamics of the process to be modeled, in addition to the
adaptation of the network parameters. In general, it produces a
comparatively satisfactory performance. Thus, the performance of
an RBFN is heavily dependent on its structure and it is imperative
to optimize the RBFN's structure to achieve a satisfactory perfor-
mance, especially in modeling a highly time-varying process. In
order to achieve a satisfactory network performance, a sufficient
number of centers is required and there is no prior knowledge to
find the exact number of centers that needed [3]. Thus, an
unnecessary large RBFN is usually used, which causes numerical
ill-conditioning in the training of the network and the worsen
generalization of the trained model [4].

In the past decades, the adaptation of RBFN's structures has
been intensively investigated. First of all, Platt [5] made a great
contribution to the dynamic RBFN's structure by introducing an
algorithm called resource allocating network (RAN). For an RAN,
the hidden units are gradually inserted into the hidden layer based
on the novelty of new data. In a latter attempt, Karayiannis and
Min [6] developed a framework for growing RBFNs which merged
supervised and unsupervised learning with network growth
techniques. They proposed that the structure of network could
be gradually constructed by splitting and increasing the prototypes
which represented the network centers. However, the insignificant
hidden neurons in [5,6] were not pruned which led to a final
network with a huge structure. To solve the oversized problem, Lu
et al. [7,8] proposed a sequential learning scheme for function
approximation using a minimal RBFN which was referred to as
minimal RAN (M-RAN). Their pruning strategy was to prune the
hidden units that had insignificant contributions to the network
performance. However, the optimal network structure achieved
in [7,8] is only for a certain data sets, while the performance would
be degraded if it is used to predict future behavior in other regions.
In recent years, a few methods have been proposed for self-
organizing RBFNs [9,10]. Although it was claimed that these
methods [9,10] outperformed M-RAN [7] and GGAP-RBF [11], the
convergence of their algorithms needed to be investigated care-
fully for successful applications, which complicates the entire
training algorithms. Moreover, there are many unknown para-
meters in [9,10] which needs preliminary runs to find optimal

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.12.030
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: D.Yu@ljmu.ac.uk (D.-L. Yu).

Neurocomputing 155 (2015) 186–193

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.12.030
http://dx.doi.org/10.1016/j.neucom.2014.12.030
http://dx.doi.org/10.1016/j.neucom.2014.12.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.030&domain=pdf
mailto:D.Yu@ljmu.ac.uk
http://dx.doi.org/10.1016/j.neucom.2014.12.030


values for the parameters before the adaptation of network take
places.

Orthogonal decomposition is a numerically stable method for
solving the least squares problems. Chen and Billings [12,13]
proposed a forward regression learning approach based on the
batch orthogonal least squares (OLS) algorithm to determine an
RBFN's structure. In their approach, the OLS algorithm was
employed to determine an appropriate set of centers from a large
set of candidate centers. The center was chosen, one by one, until
an adequate RBFN's structure was achieved. Chen and Grant [4]
further extended this method [12,13] to train a multi-input multi-
output (MIMO) RBFN. In addition, Chng et al. [14] extended the
work of Chen and Billings [12,13] by introducing a local adaptation
process for an RBFN's structure. In the work of Chng et al. [14], the
subset models with higher accuracy were achieved compared
to [12,13]. The advantage in [12–14] is that the structure and
parameters of the RBFN are decided simultaneously by evaluating
the contributions of centers to network performance. However,
one major drawback is that the optimization of network's weights
is of off-line training mode as their methods [12–14] are based on
batch OLS algorithm, which means that no new data can be
considered during the training process. For online application in
training the weights, Yu et al. [15] showed that ROLS training
algorithm was capable of maintaining the same accuracy of the
RBFN model as the off-line training while requiring less computa-
tion. Gomm and Yu [3] developed a forward and a backward
center selection algorithms using ROLS training algorithm. For the
backward selection algorithm, the structure of network is simpli-
fied by removing the centers which had smallest contribution to
the network performance. On the other hand, for the forward
selection algorithm the technique is to build a network by adding
centers which will maximally enhance the network performance.
Their method [3] resulted in an acceptable level of efficiency and
accuracy with a smaller network's size. However, the developed
RBFN models in [3] was not ‘fully’ adaptive as the centers can only
be selected from a pre-specified candidate center set. The use of
the backward center selection method was extended in [16] to
develop an adaptive RBFN model but the performance was not
satisfactory due to the lack of efficiency in the selection of centers.
In further work, Yu and Yu [17] proposed an adaptive algorithm
that incorporated the pruning strategy in [3] to adapt an RBFN
model using the ROLS training algorithm. The adding and pruning
of centers was based on the error index between the desired and
measured modeling performances. New data was added as new
center if the desired modeling performance was not achieved.
Results showed that a compact RBFN was achieved while the
desired modeling performance was maintained. However, in this
method the added new centers did not play a role immediately as
the performance was degraded for a few sample periods before
the positive role is observed during the migration of the process's
operating point.

To address these problems, this paper proposes a new algo-
rithm for the adaptation of an RBFN structure for modeling process
with operating point migration using ROLS training algorithm. The
advantage of this proposed algorithm is that the RBFN is able to be
adapted effectively and immediately to fit the new dynamics in the
new operating region of the process and achieving a satisfactory
overall prediction performance. In this developed algorithm, the
RBFN's structure, the number and location of centers, and para-
meter (weight) are adapted based on the novelty of new data. An
initial center bank with a pre-specified number of centers is
formed which involves the actions of adding, pruning and group-
ing of centers. In adding new centers, a new strategy is designed to
spread more significant centers in the current operating regions to
maximize the network performance. The pruning method in [17]
is extended to prune insignificant centers from the center bank.

Then, the centers in the center bank are divided into two groups –
active center and redundant center groups. The center grouping
algorithm is developed using a different criterion that improves
the selection of more efficient centers. Active centers are used to
predict the process output, while redundant centers are preserved
for next sample time. When the process operating point migrates
largely, the original centers will not be effective to act for output
prediction and the new centers in the region where the operating
point moves to will be added. The developed algorithm is
evaluated using a nonlinear operating point-migrating numerical
example. The effectiveness of the developed algorithm is verified
by comparing it with three adaptive structure models. The paper is
organized as follows. Section 2 explains the ROLS training algo-
rithm. The adaptation algorithm is presented in Section 3 which
includes the adding, pruning and grouping of centers. The evalua-
tion of the developed adaptive RBFN and comparison studies is
demonstrated in Section 4.

2. ROLS training algorithm of an RBFN

A standard RBFN, as shown in Fig. 1, has three layers: the input
layer, hidden layer and the output layer. The hidden layer consists
of hidden neurons and each hidden neuron has a vector called its
center. In Fig. 1, ½x1;…; xm� and Ŷ1;…; Ŷp

h i
are the input and

output vectors with their entries being network m inputs and p
outputs, respectively.

A non-linear dynamic system is presented by an NARX model
in (1).

y kð Þ ¼ f ½ y k�1ð Þ;…; y k�ny
� �

; u kð Þ;…; u k�nuð Þ� �þeðkÞ ð1Þ

where uAℜm and yAℜp are system input and output, and nu and
ny are input and output orders, respectively. eAℜp is measure-
ment noise. An RBFN is used as an approximate for the nonlinear
function in (1), where the RBFN performs a nonlinear static
mapping via the linear output transformation [3]. The input vector
x of the RBFN includes all variables in function f(n) in (1), while the
network output is ŷ. Here, the Gaussian function is used in the
RBFN as the nonlinear basis function in (1).

ϕi kð Þ ¼ exp �‖x kð Þ�c2i ‖
σ2
i

 !
; i¼ 1;…;nh ð2Þ

where ϕðkÞ is the hidden layer output, nh is the number of hidden
layer nodes (center); xðkÞ is the network input vector and ci is the
ith center with i¼ 1;…;nh. The network output is the weighted
sum of the hidden layer output and is given by,

y kð Þ ¼Wϕ

Fig. 1. The structure of an RBFN.

D.K.S. Tok et al. / Neurocomputing 155 (2015) 186–193 187



Download English Version:

https://daneshyari.com/en/article/6865983

Download Persian Version:

https://daneshyari.com/article/6865983

Daneshyari.com

https://daneshyari.com/en/article/6865983
https://daneshyari.com/article/6865983
https://daneshyari.com

