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Canonical Correlation Analysis (CCA) is one of the most popular statistical methods to capture the
correlations between two variables. However, it has limitations as a linear and global algorithm.
Although some variants have been proposed to overcome the limitations, neither of them achieves
locality and nonlinearity at the same time. In this paper, we propose a novel algorithm called Instance-
Specific Canonical Correlation Analysis (ISCCA), which approximates the nonlinear data by computing
the instance-specific projections along the smooth curve of the manifold. First, we propose a least
squares solution for CCA which will set the stage for the proposed method. Second, based on the
framework of least squares regression, CCA is extended to the instance-specific case which obtains a set
of locally linear smooth but globally nonlinear transformations. Third, ISCCA can be extended to semi-
supervised setting by exploiting the unlabeled data to further improve the performance. The optimiza-
tion problem is proved to be convex and could be solved efficiently by alternating optimization. And the
globally optimal solutions could be achieved with theoretical guarantee. Moreover, for large scale
applications, iterative conjugate gradient algorithm can be used to speed up the computation procedure.

Experimental results demonstrate the effectiveness of our proposed method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many computer vision and pattern recognition applications,
an object has multiple observations corresponding to multiple
views which are related yet different. This scenario can be found in
a wide range of applications, including pose estimation, facial
expression recognition, object recognition involving images taken
at different camera angles, and identity recognition in video and
audio streams. Some recently emerged applications including face
matching with both near-infrared and visual images [16] and the
alignment of face images taken at different resolutions [18] also
belong to this category. In such applications, modeling the statis-
tical correlations or commonalities between multi-view observa-
tions plays a very crucial role.

Canonical Correlation Analysis (CCA) [14] is one of the most
popular statistical methods for capturing the linear correlation
between two multivariate random vectors corresponding to two
different views. The goal of CCA is to seek a pair of linear
transformations that maximize the correlation between two views
after projecting the data to a common lower-dimensional space by
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applying the transformations. In recent years, CCA has been
successfully applied to a wide range of computer vision applica-
tions, such as image processing and analysis [23], facial expression
recognition [37], pose estimation [21], and image retrieval [12].
However, a limitation of CCA is that it can only reveal the linear
correlation relationship between different views in a global way,
making it inadequate for some more complicated applications.

As pointed out by Bottou and Vapnik [6], it is usually not easy
to find a single function which holds good predictability for the
entire data space, but it is much easier to seek some functions that
are capable of producing good predictions on some specified
regions. For many computer vision applications in particular, it
has been demonstrated that the idea of local learning is very
useful, e.g., [2,31,33,32,36]. For CCA, instead of seeking a common
transformation for all instances from the same view, the model
can exhibit much higher flexibility if each instance is allowed to
have a specific transformation for projecting it to a common
lower-dimensional space. To control the model complexity, the
transformations for neighboring instances may be constrained to
have the same or similar representation forms. This local learning
approach can provide greater flexibility than introducing global
nonlinearity by using the kernel trick [27].

To overcome the limitations of CCA, several variants of CCA have
been proposed in the literature. Kernel CCA (KCCA) [1] is a kernel
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extension of CCA which essentially applies CCA to data from different
views after applying kernel-induced feature mappings. However, like
most kernel methods, the nonlinearity in KCCA is applied in a global
way in the sense that the nonlinear mapping is uniform anywhere,
i.e., the induced kernel function with the same parameter is applied to
all data pairs. Moreover, to deliver good performance, the choice of
both the problem-dependent kernel function and its parameters is
still a sticky problem. Non-Consolidating Correlation Analysis (NCCA)
[10] also extends CCA by learning additional non-shared transforma-
tions for each view. NCCA comprises two steps: applying CCA to find
shared embedded data and applying NCCA to find non-shared
embedded data. In spirit, the learning of shared embedding space
in the first step is in the same way as that in CCA. Another extension,
called neural-network CCA (NNCCA) [15], is to discover nonlinear
correlation with the help of the nonlinear processing ability of a
neural network. Unfortunately, learning in neural networks suffers
from some intrinsic problems such as long-time training, slow
convergence and local optima.

While KCCA, NCCA and NNCCA extend CCA by providing non-
linear processing ability to some extent, neither of them takes the
local structure of data into account and hence cannot satisfactorily
deal with data with complex and nonlinear manifold structure. To
tackle this problem, locality preserving CCA (LPCCA) [29] was
proposed to introduce local manifold structure into CCA. In LPCCA,
the globally nonlinear problem is decomposed into a series of
locally linear sub-problems whose solutions can be combined to
give the mapping vectors. Although local information is consid-
ered, the transformation learned in LPCCA is still global in the
sense that the same transformation is applied to all instances from
the same view.

To achieve locality and nonlinearity simultaneously, we propose
in this paper a novel algorithm called Instance-Specific Canonical
Correlation Analysis (ISCCA), which approximates the nonlinear data
by computing the instance-specific projections along the smooth
curve of the manifold. First, we propose a least squares solution for
CCA to set the stage for the proposed method. From the least squares
solution, we can recover the Euclidean distance in the common
lower-dimensional space of CCA. Although similar results have been
reported by [28], our analysis is under a more general framework
than that in [28] which requires some assumption about the data
dimensionality. Second, based on the framework of least squares
regression (LSR), we extend CCA to the instance-specific case.
Specially, each instance has its own specific transformation and the
transformations are locally linear smooth but globally nonlinear. As a
consequence, the learned model is more robust and flexible.
Furthermore, under situations when large quantities of unlabeled
data are also available, ISCCA can be extended for semi-supervised
learning by exploiting the unlabeled data to further boost perfor-
mance. Semi-supervised ISCCA is particularly useful when the
labeled data is scarce. The last but not the least, our method can
be formulated as a convex optimization problem and can be solved
efficiently via an alternating optimization procedure. Irrespective of
the initial value in iteration, the globally optimal solutions could be
achieved with theoretical guarantee. Moreover, the proposed method
combined with the iterative conjugate gradient algorithm LSQR [24]
can be used for handling large-scale problems.

The contribution of the paper is highlighted in the following:
(1) we model locality and nonlinearity jointly for multi-view
correlation learning; (2) instance-specific projections are computed
along the smooth curve of the manifold; (3) the convex objective
functions are solved efficiently with global optimal solution.

The rest of this paper is organized as follows. In Section 2, some
preliminary knowledge is introduced. In Section 3, we discuss the
relationship between CCA and least squares regression under a
more general framework. The proposed instance-specific CCA
method is detailed in Section 4. Section 5 shows the experimental

results with applications to manifold alignment for pose estima-
tion and facial expression recognition, and cross-modal retrieval
tasks. Finally, Section 6 gives some concluding remarks.

2. Preliminary work

We briefly review the CCA algorithm in this section. Let us
represent two datasets X and Y with their matrix forms X e R%*!
and Y e R%*!, where | is the number of instances and each column
vector X; (y;) in X (Y) denotes an instance with d, (d,) dimensions.
For the case of reduction to one dimension, CCA computes two
projection vectors wy € R%* and Wy e R% to maximize the correla-
tion coefficient p between the two datasets:

T
p = max w, Cywy

Wy, W, T T ’
W Cowiw Gy Wy

where C, and C,, denote the sample covariance matrices of each
view and C,, denotes the sample covariance between the two
views. Since p is invariant to the scaling of wy, and w,, CCA is
equivalent to solving the following problem:

M

T
max w,C,w
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st. WiCaWy=1, W Cpwy=1. )

By introducing Lagrange multipliers, w, can be finally obtained by
solving a generalized eigenvalue problem:

Gy Gy Gy = 12 CaWy. 3)
We can then compute wy, from w, as

G, 'Cw
wy, = yyfyxx @)

If CCA is to project to multiple dimensions, multiple projection
vectors under certain orthonormality constraints can be computed
simultaneously by solving the following generalized eigenvalue
problem:

nyc);,lexWx = CXxWXAza (5)

where A is a diagonal matrix containing different A's as diagonal
entries. After obtaining the optimal Wy, we can recover W, as
follows:

W, =C,, ' CxW,A ©)

CCA can also be transformed into the following problem where
maximizing the canonical correlation in Eq. (1) is equivalent to
minimizing the distance between the two observations:

1
min > [Wix;—W,y;[13 = [WX-W,Y|]?

WeW,
st. WiXX'W, =1, WYY'W, =1, (7)
where || - || and || - || denote the #, vector norm and Frobenius

matrix norm, respectively. The Frobenius matrix norm of an
mxn matrix A with its elements a; is defined as [A|F=

\tr(AAT) =, /> > 1a?, where tr(-) denotes the trace of a

square matrix.

3. Relationship between CCA and least squares regression

In this section, we first derive the solutions of CCA and least
squares regression. Based on the derived solutions, we then
establish the relationship between the solutions and verify their
Euclidean distance based equivalence.
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