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a b s t r a c t

In order to obtain an adequate description of risk aversion for insuring critical path problem, this paper
develops a new class of two-stage minimum risk problems. The first-stage objective function is to
minimize the probability of total costs exceeding a predetermined threshold value, while the second-
stage objective function is to maximize the insured task durations. For general task duration
distributions, we adapt sample average approximation (SAA) method to probability objective function.
The resulting SAA problem is a two-stage integer programming model, in which the analytical
expression of second-stage value function is unavailable, we cannot solve it by conventional optimiza-
tion algorithms. To avoid this difficulty, we design a new hybrid algorithm by combining dynamic
programming method (DPM) and genotype-phenotype-neighborhood based binary particle swarm
optimization (GPN-BPSO), where the DPM is employed to find the critical path in the second-stage
programming problem. We conduct some numerical experiments via a critical path problem with 30
nodes and 42 arcs, and discuss the proposed risk averse model and the experimental results obtained by
hybrid GPN-BPSO, hybrid genetic algorithm (GA) and hybrid BPSO. The computational results show that
hybrid GPN-BPSO achieves the better performance than hybrid GA and hybrid BPSO, and the proposed
critical path model is important for risk averse decision makers.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a complex project management problem, we often use a
directed network graph to describe various tasks and the relation-
ships among the tasks. In this framework, the arcs represent
dependent tasks and the arc weights serve as associated task
durations. Also, there exists a node 0 representing the start of the
project and a node n representing its termination. A project can be
considered completed if all its activities have been finished. An
important theoretical result is that the minimum time to complete
all the activities in the activity network equals to the length of the
longest path from the source node to the destination node [1].
Thus, this path, called critical path, represents the sequence of
activities, which will take the longest time to complete. Chen et al.
[2] developed a polynomial time algorithm to find the critical path
and analyzed the float of each arc in a time-constrained activity
network. Guerriero and Talarico [3] proposed a general method to
find the critical path in a deterministic activity-on-the-arc net-
work, considering three different types of time constraints.
Another area of research dealt with the stochastic nature of

activity time. For example, Kelley [4,5] and Moehring [6] estimated
the probability that a project would be completed by a given
deadline if the duration for each activity is not known with
certainty; Burt and Garman [7], Bowman [8] and Mitchell and
Klastorin [9] treated mass uncertain information by heuristic-
based and Monte Carlo simulation-based techniques, and Shen
et al. [10] proposed expectation and chance-constrained models
for insuring critical path problems and designed decomposition
strategies to solve these models.

In this paper, we approach the insuring critical path problem
from a new viewpoint. It is known that the appropriateness of
expectation criterion for insuring critical path problem depends on
the assumption that the insuring process can be repeated a great
number of times, this implies by the law of large numbers that in
the long run the average cost will be equal to the expected cost.
But, this assumption will often not be justified and thus the
expected cost may not be of much interest to risk averse decision
makers. On the other hand, the optimal solution of the expected
value problem may only assure the achievement of the corre-
sponding expected cost with a relatively small probability. Conse-
quently, the risk averse decision maker will not consider the
solution of the expected value problem to be optimal. Instead,
what may be desired is a solution ensuring a low probability of
very large costs. These considerations lead us to adopt minimum
risk criterion in insuring critical path problems. In the proposed
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risk averse two-stage stochastic insuring critical path problem, the
first-stage objective function is to minimize the probability of total
costs exceeding a predetermined threshold value, while the
second-stage objective function is to maximize the insured task
durations. For general task duration distributions, we adapt the
SAA method to probability objective function and turn the original
insuring critical path problem into its associated SAA one. This
approximation method for chance constrained model and
expected value model have been discussed in [11–13]. Since the
resulting SAA model belongs to the class of NP-hard problems, we
cannot solve it by conventional optimization algorithms. In this
paper, we will employ evolutionary algorithms (EAs) to solve the
resulting SAA critical path problem.

EAs are stochastic search methods that have been used in a
variety of fields. Among existing EAs, GA [14] and PSO [15,16] are
the well-known tools for solving complex optimization problems,
and many modified and improved GA and PSO as well as their
successful applications can be found in the literature. For example,
Zeng et al. [17] proposed a dynamic chain-like agent GA for solving
global numerical optimization problem; He and Tan [18] proposed
a two-stage GA and applied it to automatic clustering; Lee et al.
[19] modified and improved BPSO; Nanni and Lumini [20] pro-
posed an efficient method based on PSO for finding a good set of
prototypes; Qin and Liu [21,22] designed Monte Carlo simulation-
based GAs to solve stochastic data envelopment analysis problems,
and Liu et al. [23] solved stochastic portfolio selection problems by
Monte Carlo simulation-based PSO algorithms. Motivated by the
work mentioned above, this paper designs a new hybrid algorithm
by combining DPM and GPN-BPSO, where DPM is employed to
find the critical path in the second-stage programming problem. In
our designed algorithm, we adopt the concept of genotype–
phenotype in biology. The genotype means genetic messages
carried by the individual's genes, and the phenotype denotes all
the observable characteristics of an individual such as physical
appearance and internal physiology. To demonstrate the effective-
ness of the proposed method, we conduct some numerical
experiments via a critical path problem with 30 nodes and 42
arcs. We first solve our critical path problem by hybrid GPN-BPSO,
then compare its solution results with those obtained by hybrid
GA and hybrid BPSO. We also discuss the difference between the
proposed risk averse insuring critical path model and the tradi-
tional risk neural model via numerical experiments.

The remainder of this paper is organized as follows: Section 2
presents a new class of risk averse two-stage stochastic insuring
critical path problems. In Section 3, we adapt the SAA method to
probability objective function, and turn the original insuring
critical path problem into its associated SAA one, which can be
reformulated as a two-stage integer programming model by
introducing additional binary variables. To solve the resulting
SAA critical path problem, Section 4 designs a new hybrid algo-
rithm by integrating DPM and GPN-BPSO. Section 5 provides one
critical path problem with 30 nodes and 42 arcs and performs
some numerical experiments to demonstrate the effectiveness of
the designed hybrid GPN-BPSO. Section 6 gives detailed discus-
sions about the proposed insuring critical path model and the
experimental results. Finally, Section 7 gives the conclusions.

2. Formulation of risk averse two-stage stochastic insuring
critical path problem

In this section, we will construct a risk averse two-stage
stochastic optimization model for insuring critical path problem.
For this purpose, we adopt the following notations to describe our
problem.

Indices:

i: index of nodes, iAN;
j: index of nodes, jAN.

Parameters:

N¼ f0;1; . . . ;ng: the set of nodes in the network;
A: the set of arcs in the network, A�N � N, where A is

topologically ordered such that ði; jÞAA only if io j;
GðN;AÞ: the directed graph representing the tasks to be com-

pleted in a complex project;
FSðiÞ ¼ fj∣ði; jÞAAg: the set of nodes adjacent from node i, 8 iAN;
RSðiÞ ¼ fj∣ðj; iÞAAg: the set of nodes adjacent to node i, 8 iAN;
Ω: the set of possible scenarios;
ω: a scenario of Ω;
cij: the cost of insuring arc ði; jÞAA;
dωij : an uninsured task duration of arc ði; jÞAA in scenario ω;
gωij : an insured task duration of arc ði; jÞAA in scenario ω;
Θ: a nondecreasing function of task completion time that

penalizes the critical path length in the second stage for
each scenario ω;

ξ: the random vector obtained by piecing together all
random task durations in the network;

φ: a predetermined maximum allowable cost.

Decision variables:

xij: 1 if arc ði; jÞ is insured, and 0 otherwise;
x: a decision vector ðxijÞ in f0;1gjAj with jAj being the

number of arcs in the network;
yωij : 1 if arc ði; jÞ is part of one identified critical path in

scenario ω, and 0 otherwise.

The second-stage objective function:

The second-stage objective function is to maximize the sum of
the insured task durations:

max ∑
ði;jÞAA

ðdωij �ðdωij �gωij ÞxijÞyωij :

The second-stage constraints:

The first constraint imposes a single-assignment rule:

∑
jA FSð0Þ

yω0j ¼ 1:

The second constraint enforces flow-balance constraints for critical
path contiguity:

∑
jA FSðiÞ

yωij � ∑
lARSðiÞ

yωli ¼ 0; 8 iAN\f0;ng:

The third constraint bounds a binary decision variable:

yωij ¼
1 if arc ði; jÞ is part of an identified critical path in scenario ω
0 otherwise:

�

Hence, the second-stage programming problem can be built as
follows:

max ∑
ði;jÞAA

ðdωij �ðdωij �gωij ÞxijÞyωij
subject to : ∑

jAFSð0Þ
yω0j ¼ 1

∑
jAFSðiÞ

yωij � ∑
lARSðiÞ

yωli ¼ 0; 8 iAN\f0;ng

yωij Af0;1g; 8ði; jÞAA:

8>>>>>>>>><
>>>>>>>>>:

ð1Þ
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