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a b s t r a c t

In this paper, an adaptive critic design (ACD)-based robust on-line neural network control design is
developed for a class of parabolic partial differential equation (PDE) systems with unknown nonlinear
dynamics. First, the Galerkin method is applied to the parabolic PDE system to derive a finite-
dimensional slow one and an infinite-dimensional stable fast subsystem. The obtained slow system is
an ordinary differential equation (ODE) systemwith unknown nonlinearities, which accurately describes
the dynamics of the slow modes of the PDE system. Then, a novel ACD-based robust optimal control
scheme is proposed for the resulting nonlinear slow system with unknown dynamics. An action neural
network (NN) is employed to approximate all the derived unknown nonlinear terms and a robust control
term is further developed to attenuate the NN reconstruction errors and disturbances. Especially, by
developing novel critic signals and Lyapunov function candidate, together with the adaptive bounding
technique, no a prior knowledge for the bounds of the disturbance term, the NN ideal weights of action
NN and critic NN and the NN reconstruction errors is required. Finally, simulation results demonstrate
the effectiveness of the proposed robust optimal control scheme.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In practice, most physical systems are inherently distributed in
time and space, such as biodynamics, chemical engineering, and
mechanical systems related to heat flows, fluid flow, or flexible
structure. In the past, most physical systems were modeled by
ordinary differential equations (ODEs) in order to simplify and
systematically solve control-design problems. However, if the varia-
tion of the systemwhich depends on the space is considered, it is not
accurate to model the physical systems as ODEs. Therefore, the
distributed parameter system (DPS) described by partial differential
equations (PDE) attracts more and more attentions. Since the out-
puts, inputs, and process states and the relevant parameters of DPS
may vary temporally as well as spatially, it is more suitable to model
the spatiotemporal dynamic systems with DPS.

In general, DPS is described by a set of PDEs with mixed or
homogeneous boundary conditions. However, due to the spatially
distributed nature and dynamic complexity, it is difficult to design
controller for DPS. Fortunately, recent research [1–4] shows that the
dynamics of the parabolic PDEs can be described approximately in a
group of low-order ordinary differential equations. In [3], the author

proposes a simple but effective modeling method for DPS by
integrating the spectral method with neural networks. In [4], the
authors stabilize DPS via the Galerkin method and the geometric
control. In [5], the K–L method is employed to model the distributed
parameter system, where a class of DPS modeled by parabolic PDE is
considered. The eigenspectrum of parabolic spatial differential
operator can be separated into a finite-dimensional slow one and
an infinite stable fast complement. Based on Galerkin's method, the
proposed lower order ODE systems can sufficiently describe domi-
nant dynamics of DPS, and thus can be used as the basis of controller
design while the fast system is stabilized.

However, when a plant is confronted in practice, whatever it is
modeled as deterministic systems or stochastic systems [29,30],
guaranteeing the stability of equilibrium point is just the basic
requirement and how to obtain the optimal performance index is
the main focus. Over the past decades, the optimal control theory
of PDE systems has been early presented by Butkovskiy [6] and
Lions [7], and more theoretical results can be found in [8,9].
Meanwhile, the optimal control problem of PDE systems has also
been well studied in engineering applications based on the
minimization of linear quadratic (LQ) performance indices. How-
ever, most mentioned results require that the nonlinear functions
of parabolic PDE systems are completely known. As far as we
know, till now there is not optimal control results for DPS with
unknown nonlinear dynamics.
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On the other hand, in recent years, in order to obtain approximate
solutions of the Hamilton–Jacobi–Bellman (HJB) equation, adaptive/
approximate dynamic programming (ADP) algorithm was proposed in
[13,21,14] as the most potential way. ADP combines adaptive critic
design (ACD), reinforcement learning techniquewith dynamic program-
ming, which have gained much attention from a lot of researchers, cf.
[15–20,22]. As one of ADP serials, ACD has held great intuitive appeal
and has attracted considerable attention in the past few years. In
general, ACD involves a critic neural network (NN) and an action NN,
where the critic NN evaluates the performance of current control and
generates a critic signal to update the control action for performance
improvement, and the action NN provides the control input to the
system. There are several works dealing with the application of ACD
methods for nonlinear systems in both discrete and continuous time.
For example, some variants of reinforcement learning neural-network-
based controllers were proposed with actor-critic architectures in
[23,24] for discrete-time nonlinear systems. For continuous-time non-
linear system, several studies have been made about ACD methods
based on neural network [25,26] or fuzzy system [27,28], respectively.

It should be noted that all of the aforementioned works are
limited to affine nonlinear systems. Although ACD algorithms have
made large progress in the optimal control field, to the best of our
knowledge, few result is available for more complicate distributed
parameter systems. Especially, there is still no result to solve the
robust optimal control problem for PDE systems with partial
unknown nonlinear dynamics. Therefore, in this paper, a novel
ACD-based robust NN controller is proposed for a class of PDE
system with unknown dynamics. Inspired by the works of [10–12],
we employ the Galerkin method to convert the dynamics of DPS
into a group of low-order functional ordinary differential equa-
tions, i.e., a low-dimensional slow system. Then based on [27], we
develop a novel critic signal to evaluate the performance of the
controller, and meanwhile a novel Lyapunov function is proposed
to guarantee the stability of the presented control scheme.
Specifically, the developed critic signal is comprised of two parts,
i.e., the primary critic signal and the second critic signal. The
primary critic signal is the function of filtered tracking error and
the second critic signal is the output of the critic NN. Meanwhile,
an action NN is employed to approximate the derived all the
unknown term instead of the usual unknown nonlinear function.
Additionally, a robust term is developed to attenuate the NN
reconstruction errors introduced by action NN and critic NN.

Briefly speaking, the main contributions of this paper can be
summarized as follows:

(1) Compared with Reference [11], we do not need to train the NN
by BP algorithm off-line and no NN approximate error need to be
estimated in advance before solving the controller gain. In this paper,
it is the first time to develop the robust on-line optimal control
scheme for DPS with unknown nonlinear dynamics, where the
robust stability and optimality synthesis of the closed-loop system
is simultaneously performed by Lyapunov method. The NN approx-
imate error and disturbance are considered without knowing the
boundedness, whereas in [11] the NN approximate error is ignored.

(2) Compared with Reference [12], we consider the nonlinear PDE
systems with unknown dynamics, and the control law is directly
derived based on an adaptive control principle rather than alternant
iteration of control laws and cost functions as in [12]. Moreover, the
computation of GHJB-like equation at each iteration is not required in
this paper, which shorten the computation time greatly.

(3) By developing a novel critic signal and novel Lyapunov
function, along with the new parameter adjusting method and
adaptive bounding technique, the uniformly ultimate bounded-
ness of all signals in the closed-loop system is proved. Further,the
assumption on the bounds of disturbance term, the ideal weights
of action NN and critic NN, and the NN reconstruction errors has
been removed.

The paper is organized as follows. In Section 2, the problem
statement is given. The ACD-based robust NN controller design is
presented in Section 3. In Section 4, the Lyapunov stability analysis
for the whole closed-loop system is given. The simulation results are
presented in Section 5, where the satisfactory performance of the
proposed approach is shown. The conclusion is drawn in Section 6.

2. Problem formulation and preliminaries

Consider the following nonlinear parabolic PDE systems in one
spatial dimension with a state-space representation of the form

∂x
∂t

¼ E1
∂x
∂z

þE2
∂2x
∂z2

þ f ðxÞþkubðzÞuðtÞþdðtÞ; ð1Þ

subject to the boundary conditions

P1xðα1; tÞþQ1
∂x
∂z
ðα1; tÞ ¼ h1;

P2xðα2; tÞþQ2
∂x
∂z
ðα2; tÞ ¼ h2; ð2Þ

and the initial condition

xðz;0Þ ¼ x0ðzÞ; ð3Þ
where xðz; tÞ ¼ ½x1ðz; tÞ; x2ðz; tÞ;…; xnðz; tÞ�T is the vector of state
variables, zA ½α1;α2� is the spatial coordinate, t40 is the time,
and uðtÞARp is the applied force to be designed, which is provided
by p-point force actuators. ∂x=∂z and ∂2x=∂z2 are the first-order
and second-order spatial derivatives of x, respectively. f(x) is an
unknown nonlinear vector function, which is locally Lipschitz
continuous and satisfies f ð0Þ ¼ 0. x0ðzÞ is the initial condition and
ku is a constant vector. bðzÞ ¼ ½b1ðzÞ; b2ðzÞ;…;bpðzÞ� is a known
smooth vector function of z, where bi(z) describes how the control
action ui is distributed in the interval ½α1;α2�, E1; E2; P1;Q1; P2 and Q2

are constant matrices, h1;h2 are column vectors. d(t) is a bounded
disturbance term, but the boundedness value is unknown.

In this paper, we aim to seek the optimal controller for this DPS
(1)–(3). However, due to the spatially distributed nature and the
existence of unknown nonlinearities, it does not allow one to directly
carry out the control design based on PDEs (1)–(3). For model-based
synthesis method and real-time controller design, a low-dimensional
NN-based ODE system is preferred. Therefore, in the next part, the
Galerkin method is used to reduce the model (1)–(3) to a low-
dimensional ODE system with unknown nonlinearities first.

Inspired by the work of [10,11], a parabolic PDE involves spatial
differential operators whose spectrum can be partitioned into a
finite-dimensional and an infinite-dimensional complement, i.e.,
the slow and fast components. This implies that the dynamical
behavior of such a system can be approximately described by a
finite-dimensional ODE system that captures the dynamics of the
dominant modes of the PDE. Generally, for such a parabolic PDE
system, if the boundary conditions are homogenous, it is feasible
to use the eigenfunctions of a spatial differential operator to derive
a low-order ODE system.

Define S as a Hilbert space of 1-D functions satisfying the
boundary conditions (2), with inner product and norm

〈ϖ1;ϖ2〉p ¼
Z α2

α1

〈ϖ1;ϖ2〉 dz ð4Þ

and

Jϖ1 J2 ¼ 〈ϖ1;ϖ1〉
1=2
p ; ð5Þ

whereϖ1;ϖ2 are two elements of S and 〈�; �〉 denotes the standard
inner product in Rn. Define the spatial operator T as

Tx¼ E1
∂x
∂z

þE2
∂2x
∂z2

; ð6Þ
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