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a b s t r a c t

Based on Gaussian margin machine (GMM) and extreme learning machine (ELM), confidence-weighted
ELM (CW-ELM) is proposed to provide point forecasts and confidence intervals. CW-ELM maintains a
multivariate normal distribution over the output weight vector. It is applied to seek the least informative
distribution from those that keep the targets within the forecast confidence intervals. For simplicity, the
covariance matrix is assumed to be diagonal. The simplified problem of CW-ELM is approximately solved
by using Leave-One-Out-Incremental ELM (LOO-IELM) and the interior point method. Our experimental
results on both synthetic and real-world regression datasets demonstrate that CW-ELM has better
performance than Bayesian ELM and Gaussian process regression.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extreme learning machine (ELM), which is an efficient learning
algorithm for single-hidden layer feedforward neural networks
(SLFNs), has been recently proposed by Huang et al. [1]. ELM
randomly initializes the parameters of the hidden layer and the
weights of the output layer are analytically computed by using
Moore–Penrose generalized inverse. Thus, ELM obtains an extre-
mely low computational time. However, the generalization ability
of ELM is influenced by changing the number of hidden neurons.
Like other similar models based on feedforward neural networks,
ELM also needs to address the problem of determining the optimal
number of hidden neurons.

Many approaches have been proposed to determine the most
suitable structure of ELM. Deconstructive methods (or pruning
methods) are one type of algorithms to solve this problem. Rong
et al. proposed a pruned ELM (P-ELM) for classification problems
[2]. Miche et al. developed a method named optimally pruned ELM
(OP-ELM) in [3] and its improvement in [4]. Deconstructive
methods, however, in general are inefficient since the most of
time they are dealing with a network that is larger than necessary.

There are also some researchers managing to solve the problem
based on constructive methods (or growing methods). Huang and
Chen presented the incremental ELM (I-ELM) [5] and its modifica-
tions [6–7], which are examples of constructive methods. Wang

et al. proposed an algorithm for architecture selection of ELM
based on localized generalization error model [8]. But in these
methods, the expected training accuracy or the maximum number
of hidden neurons needs to be set in advance. Yu et al. proposed
a method called Leave-One-Out-Incremental ELM (LOO-IELM) in
which the LOO error is directly calculated by the PRESS statistics
[9]. LOO-IELM adds hidden nodes one-by-one and stops automa-
tically based on the stop criteria. However, the PRESS has the
problem of numerical instabilities because of the use of a pseudo-
inverse in the calculation. Fortunately, the Tikhonov-regularized
PRESS can eliminate this problem [4].

In many regression problems, it is advantageous to have both
point forecasts and confidence intervals (CIs). To derive CIs, neural
networks are usually combined with other methods, such as
bootstrap methods [10] and Bayesian methods [11]. Bootstrap
methods are nonparametric approaches of statistical inference
based on re-sampling. Their high computational cost makes them
less attractive. Bayesian methods for neural networks have been
researched intensively in recent years due to their efficiency and
effectiveness [12]. For example, Bayesian neural network was
employed for rainfall–runoff modeling in [13] and for short time
load forecasting in [14]. It is worth noting that Emilio et al.
presented a Bayesian approach to extreme learning machine and
proposed Bayesian ELM (BELM) in which a normal distribution
was introduced on the output weight vector [15]. Compared with
ELM, BELM has the advantages of allowing regularization auto-
matically and producing point forecasts and CIs simultaneously.
However, BELM lacks proper adaptability to complex noise (e.g.,
heteroscedastic noise) since an isotropic normal distribution is
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used. Moreover, Gaussian process regression (GPR) can provide
both point forecasts and CIs simultaneously [16]. The hyper-
parameters of GPR are estimated by maximizing the likelihood
of the samples. Like BELM, GPR also lacks the adaptability to
complex noise. Gaussian margin machine (GMM) [17] offers
another method for obtaining CIs. GMM, originally proposed for
linear classification problems, assumes that the weight vector
follows a multivariate normal distribution, and aims to seek the
least informative distribution that classifies each training sample
with a high probability. The probability that a sample belongs to a
certain class is automatically provided by GMM.

The present study proposes confidence-weighted extreme
learning machine (CW-ELM) for regression problems by combin-
ing GMM and ELM. The output weight vector of CW-ELM follows
a multivariate normal distribution. The method aims to seek the
least informative distribution from those that keep the targets
within the forecast CIs. The covariance matrix of the normal
distribution is taken to be diagonal for simplicity, and the
simplified problem is approximately solved by two steps. The first
step is to implement LOO-IELM and to substitute the results into
the simplified problem. That is, the hidden layer parameters of
LOO-IELM are used as those of CW-ELM, and its corresponding
output weight vector is set to be the mean vector of the normal
distribution. The second step is to solve the final problem by using
the interior point method [18]. It should be noted that, in LOO-
IELM in this study, the Tikhonov-regularized PRESS is applied
instead of the PRESS. Like BELM and GPR, CW-ELM offers the CIs
automatically. The diagonal covariance matrix used in CW-ELM
is more complex than the isotropic one adopted in BELM. Thus,
CW-ELM may have proper adaptability to complex noise.

The rest of this paper is organized as follows: Gaussian margin
machine is introduced in Section 2, which is followed by Section 3
describing some preliminaries of LOO-ELM and BELM. In Section 4,
CW-ELM is proposed. Our CW-ELM is evaluated using synthetic
and real-world regression datasets, and CW-ELM is compared with
BELM and GPR in Section 5. Section 6 draws the final conclusions.

2. Gaussian margin machine

Suppose the samples fðxi; oiÞgli ¼ 1, where xiARm is a column
vector and oiAf�1;1g is a scalar output. The weight vector w1 of
the linear classifier is assumed to follow a normal (Gaussian)
distribution Nmðμ1;Σ1Þ, where μ1ARm is a column vector and
Σ1ARm�m is a definite matrix. For the sample xi, we get

xTi w1 �NðxTi μ1; x
T
i Σ1xiÞ; ð1Þ

where T means matrix transposition.
The linear classifier is required to correctly classify the sample

xi with a high probability, that is

PrðoixTi w1Z0ÞZδ; ð2Þ

where δAð0:5; 1� is a confidence parameter.
Combining Eqs. (1) and (2) yields

Pr
oixTi w1�oixTi μ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xTi Σ1xi
q r�oixiTμ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xTi Σ1xi
q

0
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1
CAr1�δ: ð3Þ

GMM is designed to seek the least informative distribution that
will classify the training samples with high probability, which is
implemented by seeking a distribution with minimum relative
entropy with respect to an isotropic distribution Nmð0; aImÞ, where
a is a prior parameter. The optimization problem of GMM can be

expressed as

min
μ1 ;Σ1

DKLðNmðμ1;Σ1Þ‖Nmð0; aImÞÞ

s:t: Pr
oixiTw1�oixTi μ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xTi Σ1xi
q r �oixTi μ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xTi Σ1xi
q

0
B@

1
CAr1�δ;

Σ140; i¼ 1;⋯; l; ð4Þ
where DKL stands for the relative entropy of Nmðμ1;Σ1Þ and
Nmð0; aImÞ, which can be calculated by

1
2
ln detðaImΣ�1

1 Þþ1
2
tr ðaImÞ�1ðμ1μ

T
1þΣ1�aImÞ

� �
: ð5Þ

By disregarding the constant terms of objective function and
transforming the constraints of Eq. (4), the problem can be
reformulated as

min
μ1 ;Σ1

1
2 � ln detΣ1þ1

atrðΣ1Þþ1
a‖μ1‖2

� �

s:t: oixTi μ1ZΦ�1ðδÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTi Σ1xi

q
Σ140; i¼ 1;⋯; l; ð6Þ

where Φ�1 denotes the inverse cumulative distribution function
of a standard normal distribution.

The two-sided PAC-Bayesian theorem ensures that GMM is of
desirable generalization performance, and the proof process is
presented by [17].

3. Preliminaries

ELM can be considered as universal approximation, and has
been applied in many fields. This section will briefly describe ELM,
LOO-IELM and BELM.

3.1. Extreme learning machine

Let fðxi; tiÞgli ¼ 1 be a sample set where xiARm is the ith input
vector and tiAR is its corresponding target. In ELM, the hidden
layer parameters are randomly initialized. ELM is mathematically
modeled by

yi ¼ gðxiÞTμ2; ð7Þ
where gðxiÞARp is the output vector of the hidden layer, μ2ARp is
the output weight vector, and p is the number of the hidden

neurons. ELM computes the output weight vector μ2 ¼Η†t by
Moore–Penrose generalized inverse, where Η ¼ ½gðx1Þ;…; gðxlÞ�T ,
and t ¼ ½t1;…; tl�T . Thus, ELM has an extremely low computational
time. However, Moore–Penrose generalized inverse leads ELM to
suffer from the overfitting problem. Regularization is one of
methods to improve the generalization performance of ELM.
Regularized ELM aims to minimize not only the training error
but also the norm of output weights. The regularized methods
include Lasso, Tikhonov, and elastic net [9]. In this study, Tikhonov
regularization is used, and is described as

min
μ2 ;ξ

1
2 C ∑

l

i ¼ 1
ξ2i þ‖μ2‖

2

 !

s:t: gðxiÞTμ2�ti ¼ ξi; i¼ 1;…; l; ð8Þ
where C is the regularization parameter.

Using the KKT conditions, the output weight vector μ2 can be
analytically computed as

μ2 ¼
I
C
þΗΤΗ

� ��1

ΗΤ t: ð9Þ
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