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a b s t r a c t

In this paper, we propose a biology-constrained gene expression discretization method based on
class distribution diversity. Inspired by the intrinsic relationship between gene expression and gene
regulation, we constrain gene expression discretization to be of at most three discrete states and locate
cut points using a regulatory states-guided mechanism. To take advantage of class label information, we
define class distribution diversity (CDD) for an interval and devise three supervised discretization rules.
The proposed method is very cost-efficient and simple to implement in practice. In the experiments, we
evaluated the proposed method using four publicly available gene expression datasets involving four
types of cancer: leukemia, prostate, lymphoma and liver cancer, and compared with two previous
methods, Fayyad and Irani's (FI) and EBD. The experimental results show the effectiveness and efficiency
of the proposed method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of high-throughput biological technology, an
increasing amount of OMICs data are being generated [1,2].
Although the data are rich with information of biological system
and potentially useful for deciphering cancer pathology, they are
typically high-dimensional and noisy, thus posing an unprecedent
knowledge discovery challenge [3]. Gene expression profiles, for
example, have been proven to be more efficient to diagnose and
classify cancer than traditional histological data, provided that
they are properly preprocessed. Among existing data preproces-
sing methods, discretization transforms continuous data to be in a
discrete form by reductionism and tends to yield more concise and
more accurate decision rules [4–7]. On the other hand, useful
information may be wrongly discarded during discretization, and
it is challenging to develop an efficient gene expression discretiza-
tion method that minimizes loss of cancer-related information.

Generally, data discretization can perform in a supervised
or unsupervised manner. They differ in whether or not class
membership information is used in forming discrete intervals.
An unsupervised method does not use such information, and
its two representative examples are equal-width (EW) and

equal-frequency (EF) methods [8]. EW partitions the range of
variables’ values based on a prefixed interval width while EF based
on sample fraction quantity. Although unsupervised methods
are simple and take a relatively low computational cost, they are
vulnerable to outliers and the results obtained are often unsatis-
factory in practice. In contrast, supervised methods tend to be
more sophisticated by incorporating class membership informa-
tion and usually yield classifiers that have superior performance
[8–10]. A supervised discretization method generally consists of
two key steps: 1) scoring the goodness of a set of intervals and 2)
searching for a good-scoring set of intervals in the discretization
solution space. The scoring functions can be derived from statistics
or informatics, such as χ2-based measures [6,11] and entropy-
based scores [12,13]. Besides the dichotomy of superivised or
unsupervised, discretization methods can also be categorized into
dynamic vs static, global vs local, splitting (top-down) vs merging
(bottom-up) or direct vs incremental. Readers can refer to litera-
tures [4,5] for more details.

FI, developed by Fayyad and Irani [10], is one of most com-
monly used discretization methods in practice. The method is
supervised, in which a discretization solution is scored by using
the entropy of the target variable that is induced by the solution
and a recursive partitioning strategy based on minimum descrip-
tion length (MDL) is employed to find optimal discrete intervals in
a greedy manner. The searching greediness often causes FI to trap
at a local minimum and it is not guaranteed to find a globally
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optimal discretization solution. Recently, Boulle [14] introduced
Bayesian theory and developed a Bayesian score to assess the
goodness of a discretization solution. In contrast to the entropy-
based FI score, the Baysian score (BS) incorporates domain knowl-
edge on the predictor variable to assess a discretization solution.
Based on BS, the authors devised a new discretization method
named MODL. However, MODL suffers from the forced assumption
of uniform prior probability distribution over discretization solu-
tions, and is not applicable in many practical cases. To overcome
the assumption limitation, Lustgarten et al. introduced two priors,
structure and parameter priors, to have a flexible calculation of BS.
Specifically, the parameter prior is used to control the multi-
normal distribution of the target variable in each interval and the
structure prior to guide the selection of the number of intervals
and the location of the cut points in a discretization solution. The
improved MODL was named efficient Bayesian discretization
(EBD). In addition to the improved calculation of BS, EBD also
has a lower time complexity of O(n2), where n is the number of
instances, than MODL (O(n3)), which makes EBD more applicable
in practice.

To our knowledge, there exists no method that can exploit a
priori biological knowledge for discretizing gene expression data.
In this paper, we propose a biology-constrained gene expression
discretization method motivated by the intrinsic relationship of
gene's expression and regulation. Biologically, the expression
levels of a gene are often regulated in response to the endogenous
or exogenous stimuli of cells. For simplicity, complex regulatory
activity is often categorized into three states, down-regulated,
non-regulated and up-regulated [15]. In light of the taxonomy of
regulation activity, we argue that gene expression can be discre-
tized to at most three basic intervals that associate with the three
regulatory states. We incorporate this as a biological constraint
into gene expression discretization to not only simplify the
discretization but also make the discretization biologically under-
standable. On the other hand, we follow the supervised line
described above to increase the efficiency of discretization. As a
result, class distribution diversity (CDD) is defined to measure the
discriminative power of an interval and three CDD-based discre-
tization criteria devised. The use of the criteria make the proposed
method free to iterative searches as in most previous methods and
lead to a low computational cost.

The rest of the paper is organized as follows. In Section 2, we
first review related biological knowledge on gene regulation and
expression, and then present our method in detail. In Section 3, we
evaluate the proposed method using four real-world gene expres-
sion data sets and compare it with two previous methods, FI and
EBD. The influences of the parameters on the proposed method
are also discussed in this section. Finally, we conclude the paper.

2. Methods

In order to adapt to and survive in variable environments, cells
often actively regulate their gene expression to maintain a
physiological balance. Therefore, regulatory states largely influ-
ence expression levels in a cell. In genetics, a gene can be in one of
three regulatory states, i.e., down-regulated (DR), non-regulated
(NR) and up-regulated (UR) in a particular cellular status [16,17].
So, we reason that the whole expression range of a gene can be
divided into three natural segments closely related to three
regulatory states, possibly named DR-related, NR-related and UR-
related, and these segments can be located from left to right along
the expression range. Because differential regulatory patterns of a
gene in a cell are deemed to be responsible for different cellular
phenotypes, these segments can guide the seeking for discrete
intervals that are responsible for the distinction of different

phenotypes of interest. The two boundaries between two immedi-
ate neighbor segments would be potential candidates cut points
for a discriminative discretization. Based on the logics, we devise
our biology-constraint gene expression discretization method in
the following sections.

2.1. Definition of class distribution diversity for a half-open interval

For convenience, we consider a binary cancer classification
problem. Note that a multi-class classification problem can be
handled by converting it into multiple binary problems. Let N1

and N2 represent the sample sizes of the two classes, class 1 and
class 2. Given a left-side-half-open interval of a gene predictor,
v¼ ð�1; l�, we define its class distribution diversity (CDD),
denoted by D(v), w.r.t the two classes as

DðvÞ ¼ n1ðvÞ
N1

�n2ðvÞ
N2

ð1Þ

where n1(v) and n2(v) represent the numbers of samples belong-
ing to class 1 and 2 in the interval v, respectively. Note that
a CDD can be positive or negative value, of which the positive
indicate that class 1 dominates the interval and class 2 does
otherwise. When l slides along the range from left to right, a series
of intervals vi can be obtained with the corresponding CDDs Di

calculated by Eq. (1).

2.2. The property of CDD

It can be imagined that for a binary problem, there could be
three representative situations of regulatory state distribution
between the two classes: i) The two classes share a same
regulatory pattern, as shown in Fig. 1A; ii) The two classes have
completely different regulatory patterns, as shown in Fig. 1B; iii)
One class is in non-regulatory state while the other is both
in down-regulatory state and in up-regulatory state, as shown
in Fig. 1C. Assuming that the expression of a gene is normally
distributed under a regulatory state, we simulated the gene
expression distributions in the three regulation situations above.
In each case, we uniformly divided the whole expression range
into m¼50 segments to form 50 left-side-half-open intervals
upper-bounded by the right end of m segments. The CDDs for
the intervals were calculated by Eq. (1) and are plotted in Fig. 1D.

First, for case i, all the intervals have a very small absolute value
of CDDs due to the non-significant difference of class distributions,
as shown in Fig. 1D. One can reason that genes with such kind of
CDD distribution patterns would be non-informative to the class
distinction and the expression range should be discretized into
one state. Second in case ii, in sharp contrast, the CDD curve has a
remarkable peak between the two regulatory states, as shown in
Fig. 1D. It can be reasoned that such genes would be closely
relevant to the class distinction and the expression range can be
discretized into two parts that are separated by the peak. Third,
compared with cases i and ii, case iii has a little complex CDD
distribution, where two turning points appear at the boundaries of
two adjacent regulatory states, as shown in Fig. 1D. The two
turning points correspond to the maximum and minimum values
of CDDs, respectively. We reason that in this case, the gene is also
relevant but not as much as case ii to the class distinction, and the
expression range can be discretized to three parts around the two
turning points.

2.3. Three discretization criteria based on class distribution diversity

Assume that the expression range of a gene is uniformly
divided into m (mZ50) segments. Let li, i¼1,2,…,m, denote the
upper-boundaries of these segments, we can have m half open
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