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a b s t r a c t

The assessment of non-genotoxic hepatocarcinogenicity of chemicals relies on time-consuming rodent
bioassays. The development of alternative methods for non-genotoxic hepatocarcinogenicity could help
the identification of potential hepatocarcinogenic chemicals. This study evaluated four types of features
for the interpretable prediction of non-genotoxic hepatocarcinogenic chemicals including chemical–
chemical interactions (CCI), chemical–protein interactions (CPI), chemical descriptors (QSAR) and gene
expression profiles (TGx). Based on the results of decision tree classifiers, the CPI-based features perform
best with independent test accuracies of 90% and 86% for interaction scores from combined scores and
databases, respectively. Informative features were identified and analyzed to give insights into the non-
genotoxic hepatocarcinogenicity of chemicals. The difference between CPI scores and gene expression
profiles for the identified important proteins shows that CPI could play more important roles in non-
genotoxic hepatocarcinogenicity.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Chemical carcinogenesis can be classified into two main cate-
gories of genotoxic (mutagenic) and non-genotoxic (non-muta-
genic) agents according to the mechanism of action [1,2]. The
evaluation of chemical carcinogenesis is important for both the
drug safety and regulation of environmental chemicals. Several
short-term in vitro and in vivo assays have been developed to
assess genotoxic agents by measuring DNA damage, mutagenic
effects, and chromosomal aberrations [3]. However, due to the
complex nature of non-genotoxic agents, the assessment of non-
genotoxic hepatocarcinogenicity of chemical compounds is based
on 2-year rodent bioassays that are labor-intensive, time-
consuming and expensive. There are only 1500 chemicals studied
by National Toxicology Program during the past 30 years [4]. It is
desirable to develop alternative methods to efficiently prioritize
potential non-genotoxic hepatocarcinogenicity of chemicals for
further studies.

Numerous computational models have been developed to
predict various toxicity endpoints with reasonably good prediction
performance. For example, the quantitative structure–activity
relationship (QSAR) models have been extensively used to analyze

and predict carcinogenicity [5–8]. QSAR models aiming to correlate
chemical structure information and toxicity endpoints could provide
useful information of important structures for toxicity alerts. How-
ever, the application of QSAR models for predicting non-genotoxic
hepatocarcinogenicity yields a low accuracy of 55% [9] showing the
high complexity of non-genotoxic hepatocarcinogenicity.

Recently, toxicogenomics (TGx) correlating gene expression
profiles and toxicity endpoints has emerged as important alter-
native methods. With the power of machine learning methods,
TGx performs well in non-genotoxic hepatocarcinogenicity with a
test accuracy of 80% [9,10]. In contrast to traditional 2-year rodent
bioassays, TGx methods require less experimental effort. Gener-
ally, published TGx methods select 29–120 genes as important
biomarkers and require short-term experiments with 5–28 days
[9,11,10]. However, the classification methods for the above-
mentioned methods are not interpretable. For practical uses, the
number of biomarkers is expected to be as small as possible. It is
desirable to develop interpretable classification methods with a
high accuracy and a small number of features. Also, TGx methods
utilize only gene expression information without incorporating
protein-binding effects that are important mechanisms of non-
genotoxic carcinogenicity.

The chemical–chemical (CCI) and chemical–protein interaction
(CPI) information grows very fast in recent years. Benefit from the
development of CCI and CPI databases, enormous interaction data
obtained from databases, experiments and text-mining can be
easily accessed from the structured databases of STITCH [12–14].
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It provides a great opportunity to study the performances of CCI
and CPI for analyzing and predicting non-genotoxic hepatocarci-
nogenicity. To study the effects of chemical–protein interactions
on non-genotoxic hepatocarcinogenicity, we proposed a CPI-based
method to identify protein biomarkers with interpretable rules for
predicting non-genotoxic hepatocarcinogenic chemicals [15].
A protein biomarker ABCC3 was identified as a potential biomar-
ker for further exploration with an accuracy of 86% outperforms
the state-of-the-art methods of gene expression profile-based
toxicogenomics using 90 gene biomarkers [15].

Moreover, the CCI feature was recently utilized to predict
chemical toxicity effects based on the assumption that interactive
chemicals are more likely to share similar toxicity [16]. The CCI-
based feature was also successfully applied to the prediction of
effective drug combinations [17]. The combination of CCI and CPI
features has been applied to predict drug side effects [18]. Four
features can be generated based on scores from databases,
experiments, text-mining and combined scores for each of the
CCI and CPI features.

In this study, 12 features of 4 CCI, 4 CPI, 1 QSAR and 3 TGx
features were proposed to predict non-genotoxic hepatocarcino-
genicity using interpretable decision tree classifiers. Important
features and associated rules were analyzed to give insights into
the mechanism of non-genotoxic hepatocarcinogenicity. The CPI-
database feature performs well in both 5-fold cross-validation and
independent test accuracies of 82% and 86%, respectively. This
study stressed out that the importance of chemical–protein inter-
action effects on the prediction of non-genotoxic hepatocarcino-
genicity of chemicals.

2. Materials and methods

2.1. Dataset

In order to demonstrate and compare prediction performances
of various features of the four feature types including CCI, CPI,
QSAR and TGx, this study utilized a dataset developed by Liu et al.
[9] consisting of 62 chemicals with publicly available gene expres-
sion profiles in rat. There are 13 positive chemicals with non-
genotoxic hepatocarcinogenicity and 49 negative chemicals with-
out non-genotoxic hepatocarcinogenicity. The 62 chemicals are
divided into a training dataset and an independent test dataset
according to the previous study [9]. The training and independent
test datasets consisting of 8 positive and 32 negative chemicals
and 5 positive and 17 negative chemicals are utilized for training
and testing models, respectively.

2.2. Chemical–chemical and chemical–protein interactions

Chemical–chemical (CCI) and chemical–protein interaction
(CPI) data are obtained from STITCH 3.1 database [13,14,12].
STITCH database is an aggregated database of interactions con-
necting over 300,000 chemicals and 2.6 million proteins from 1133
organisms [19]. The interaction data are obtained from three major
sources of experiments, databases and text-mining. The experi-
ment part consists of direct chemical–chemical and chemical–
protein interacting data with experimental evidences. The data-
base part contains interaction data from pathway databases. The
text-mining data is obtained by extracting information of interac-
tions from literatures using text-mining techniques. Likelihood or
relevance scores of interactions are available for each evidence
type. An overall score for a given chemical–protein interaction is
generated by combining the three scores of corresponding evi-
dence types that is available at STITCH. For chemical–chemical
interaction, the combined score is calculated from the three scores

and a similarity score available at STITCH. The score is divided by
1000 and is ranging from 0 (no interaction) to 1 (strong interac-
tion). Chemical–protein interactions are transferred between spe-
cies based on the sequence similarity of the proteins [19].

2.3. Chemical descriptors

To generate chemical descriptors, chemical 2D structures were
firstly extracted from PubChem database. Subsequently, PaDEL-
Descriptor [20], a software for calculating molecular descriptors
and fingerprints, was utilized to calculate 770 1D and 2D descrip-
tors and PubChem fingerprints. The calculation of descriptors and
fingerprints is mainly based on the Chemistry Development Kit
[21] with some additional descriptors and fingerprints including
atom type electrotopological state descriptors, McGowan volume,
molecular linear free energy relation descriptors, ring counts,
count of chemical substructures, binary fingerprints and count of
chemical substructures. The final feature vector is a 1610-
dimensional vector.

2.4. Gene expression profiles

The gene expression profiles associated with the chemicals
were extracted from a publicly available dataset GSE8858 [22] of
Gene Expression Omnibus database. The experiments were per-
formed on three layouts of EXP5280X2-584, EXP5280X2-613 and
EXP5280X2-648 of GE Healthcare/Amersham Biosciences Code-
Link UniSet Rat I Bioarray. Three datasets are available for three
time points of 1 day (TGx-1d), 3 days (TGx-3d) and 5 days (TGx-
5d). The dose for each chemical was selected according to Liu et al.
[9]. For each dataset of TGx-1d, TGx-3d and TGx-5d, there are
10,399 expression values associated with each chemical resulting
in a 10,399-dimensional feature vector.

2.5. Decision tree algorithm

Decision tree algorithms capable of generating interpretable
rules are widely used in various classification and regression
problems such as immunogenic peptides [23], ubiquitylation sites
[24], gamma-turn types [25], protein subnuclear localization [26],
promoters [27] and esophageal squamous cell carcinoma [28]. In
this study, the decision tree method C5.0 is applied to construct
decision tree classifiers and derive interpretable rules for classify-
ing non-genotoxic hepatocarcinogenicity. C5.0 is an improved
version of C4.5 with smaller trees and less computation time
[29]. The implementation of C5.0 used in this study is the R
package C50 [30].

The construction of a decision tree is described as follows.
First, information gain is utilized to rank features. Second, the top-
ranking features are iteratively appended as nodes to split data
into subsets. The tree growing process stops when the data subset
in each leaf node belongs to the same class. The fully grown tree is
prone to over-fit the training data. Therefore, a pruning process is
applied to reduce the tree size by replacing a subtree with a leaf
node to avoid over-fitting problems. The pruning process is based
on a default threshold value of 25% confidence. The samples in the
leaf node are the covered samples of the rule. The class label of a
leaf node is determined by using a majority rule. The samples with
a relative small size in the leaf node are regarded as misclassified
samples. The final decision tree can directly generate if-then rules
where one leaf node corresponds to one rule.

2.6. Performance measurement

To evaluate classifiers for their prediction performance, the
widely used 5-fold cross-validation method is applied. Four
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