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a b s t r a c t

In this paper, an online sequential extreme learning machine with kernels (OS-ELMK) has been proposed
for nonstationary time series prediction. An online sequential learning algorithm, which can learn
samples one-by-one or chunk-by-chunk, is developed for extreme learning machine with kernels.
A limited memory prediction strategy based on the proposed OS-ELMK is designed to model the
nonstationary time series. Performance comparisons of OS-ELMK with other existing algorithms are
presented using artificial and real life nonstationary time series data. The results show that the proposed
OS-ELMK produces similar or better accuracies with at least an order-of-magnitude reduction in the
learning time.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Time series prediction has played a crucial role in the devel-
opment of techniques for dynamic system modeling, and non-
linear time series prediction has got more and more attention
[1,2], for most practical situations, nonlinear signal processing is
needed. Support vector machines [3–5], neural networks [6–8],
and other machine learning methods [9–11] have been applied to
predict time series. Most of the published papers were concerned
with stationary time series other than the nonstationary time
series. However, practical time series is almost nonstationary,
which restricts the stationary methods. Consequently, the research
of nonstationary time series prediction has been increasing
important [12–14].

According to Takens' embedding theorem [15], a time series can
be reconstructed into the phase space by the delay coordinate, and
the reconstruction translates time correlation to spatial correla-
tion. With the universal approximation capability, neural networks
are able to approximate the spatial correlation effectively. How-
ever, gradient-based learning algorithms, which are commonly
used in traditional neural networks, converge slowly and are
easy to be trapped in local minimum [16,17]. Many learning
methods have been developed or improved to speed up the

training of neural networks. Among these methods, extreme
learning machine (ELM) [18,19] has been one of the most efficient
learning methods. ELM is developed for single hidden layer
feedforward neural networks. In ELM, the weights connecting
the input layer and the hidden layer, and the bias values of the
hidden layer are randomly generated before learning and are left
fixed during the learning process. At the same time, the weights
connecting the hidden layer and the output layer are computed
analytically. ELM has overcome the disadvantages of traditional
neural networks, and has been successfully applied to regression
[20,21], classification [22,23] and time series prediction [24,25].

The original and most variants of ELM are essentially batch
learning, which still require elaborate and costly operations,
limiting their applicability in real-time or nonstationary situations.
Some online types of ELMs have been developed to deal with the
problems where training samples are received one-by-one or
chunk-by-chunk [26,27]. Moreover, in order to deal with the
nonstationary situation, OS-ELM-TV [14] and LAFF-OS-ELM [13]
are proposed. However, the optimal number of hidden nodes and
basis function also should be determined beforehand by users. On
the other hand, a special batch variant of ELM, extreme learning
machine with kernels (ELMK) [28], uses unknown kernel map-
pings instead of known hidden layer mappings (resulting in no
need to select the number of hidden nodes) and has been verified
to have similar or better prediction performance. On the basis
of the aforementioned analysis, in this paper, an online sequential
learning algorithm is developed for extreme learning machine
with kernels (ELMK) and the resulting model is referred as
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OL-ELMK, which can learn the training samples one-by-one or
chunk-by-chunk. In order to deal with the nonstationary problem,
an decremental algorithm is developed for OS-ELMK to remove
the trained samples, and a fixed memory prediction scheme is
designed to save more computational load and to further improve
the prediction performance.

The rest of this paper is organized as follows. Section 2 gives a
brief introduction of ELM and ELMK. Section 3 presents the online
sequential learning algorithm and the fixed memory prediction
scheme. In Section 4, simulation results of three artificial and
real life examples are given. Finally, in Section 5, conclusions are
drawn.

2. Preliminary

2.1. Extreme learning Machine

ELM is a single hidden-layer feedforward neural network, and
has a simple three layer structure: input layer, output layer, and
hidden layer which contains a large number of nonlinear proces-
sing nodes. The weights connecting the input layer to the hidden
layer, and the bias values within the hidden layer are randomly
generated and maintained throughout the learning process. The
weights connecting the hidden nodes and the output nodes are
computed analytically.

For N training samples ðxi; tiÞ, where xiARp and tiAR, ELM can
be mathematically formulated as

∑
L

i ¼ 1
wigðWinðiÞ � xjþbiÞ ¼ oj; j¼ 1;…;N: ð1Þ

where WinðiÞARp is the weight vector connecting the input nodes
to the ith hidden node,WinðiÞ � xj denotes the inner product of WinðiÞ
and xj, biAR is the bias of the ith hidden node, gð�Þ is the activation
function, wiAR is the weight connecting the ith hidden node to
the output node, ojAR is the output of ELM, and L is the number
of the hidden nodes. gð�Þ can be any infinitely differential function.
Eq. (1) can be further expressed by the following matrix–vector
form:

Hw¼ o: ð2Þ
where

H¼
gðWinð1Þ � x1þb1Þ … gðWinðLÞ � x1þbLÞ

⋮ ⋱ ⋮
gðWinð1Þ � xNþb1Þ ⋯ gðWinðLÞ � xNþbLÞ

2
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3
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N�L

;

o¼ ½o1;…; oN�T and w¼ ½w1;w2;…;wL�T . Matrix H is called the
hidden layer output matrix of ELM. The ith row of H, hi is the
hidden layer output vector with respect to inputs xi. Since in the
ELM learning framework, WinðiÞ and bi are randomly chosen
beforehand, hi is only related to the inputs.

If the ELM model with L hidden nodes can learn these N
training samples with no residuals, then it means that there exist
wi so that

∑
L

i ¼ 1
wigðWinðiÞ � xjþbiÞ ¼ tj; j¼ 1;…;N: ð3Þ

where tj is the target value.
Eq. (3) can be written compactly in the matrix–vector form as

Hw¼ t ð4Þ
where t ¼ ½t1;…; tN�T is the target vector. As the input weights and
the hidden layer bias have been randomly chosen in the beginning
of learning, (4) becomes a linear parameter system, and the
smallest norm least squares' solution of the linear parameter

system is

w¼H†t ð5Þ
where H† is the Moore–Penrose generalized inverse of H.

2.2. Extreme learning machine with kernels

The training process of ELM is a simple linear regression, which
can effectively overcome the inherent flaws of traditional neural
network [19,18]. However, the number of the hidden layer nodes,
which is an important parameter of ELM crucial to the performance
of prediction model, usually should be selected by some time-
consuming methods according to the learning tasks [29,25]. Avoiding
the hidden nodes' selection problem, the extreme learning machine
with kernels (ELMK) is developed [7,28], which replaces the hidden
layer mapping hðxÞ in extreme learning machine by the kernel
function mapping ϕðxÞ in the support vector machine. Consequently,
the hidden layer mapping can be unknown.

The kernel matrix of ELM can be defined as follows:

KELM ¼HHT :

KELMði;jÞ ¼ hðxiÞ � hðxjÞ ¼ Kðxi; xjÞ:

As a result, the output function can be written as

f ðxÞ ¼ hðxÞHT HHT þ I
C

� ��1

t

¼
Kðx; x1Þ

⋮
Kðx; xNÞ

2
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3
75
T

KELMþ I
C

� ��1

t

The hidden layer mapping in the special kernel implementa-
tion of ELM can be unknown, but the corresponding kernel is
usually given. Therefore, there is no longer needed to identify the
number of hidden nodes (the dimension of the hidden layer
feature space).

Given a training set ðxi; tiÞ; i¼ 1;…;N, where xiARP , and tiAR.
The original optimization problem of ELMK can be written as

min LP ¼
1
2
JwJ2þC

2
∑
N

i ¼ 1
ξ2i

s:t: ϕðxiÞTw¼ ti�ξi ð6Þ

wherew is a vector in the feature space F, and ϕðxÞmaps the input
x to a vector in F. C is the regularization parameter, and ξ is the
error. Here, we use ϕðxÞ instead of hðxÞ in order to keep consistent
with the support vector machine and explicitly indicate that the
mapping is unknown. From the analysis of Section 2.1, we know
that the mapping hð�Þ or ϕð�Þ is only relative to the inputs.

The corresponding Lagrangian dual problem can be formatted
as

LD ¼ 1
2
JwJ2þC

2
∑
N

i ¼ 1
ξ2i � ∑

N

i ¼ 1
θiðϕðxiÞTw�tiþξiÞ ð7Þ

where θi denotes the ith Lagrangian multiplier.
The KKT optimality conditions of (7) are as follows:

∂LD
∂w

¼w� ∑
N

i ¼ 1
θiϕðxiÞ ¼ 0-w¼ ∑

N

i ¼ 1
θiϕðxiÞ ð8Þ

∂LD
∂ξi

¼ Cξi�θi ¼ 0-θi ¼ Cξi; i¼ 1;…;N ð9Þ

∂LD
∂θi

¼ϕðxiÞTw�tiþξi ¼ 0; i¼ 1;…;N ð10Þ
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