
Exploiting class label in generative score spaces

Bin Wang a,c,n, Cungang Wang b, Yuncai Liu c

a College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
b School of Computer Science, Liaocheng University, Liaocheng 252400, China
c Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China

a r t i c l e i n f o

Article history:
Received 14 January 2013
Received in revised form
31 March 2014
Accepted 7 May 2014
Communicated by H. Yu

Keywords:
Generative score spaces
Discriminative extension
Classification
Feature mapping

a b s t r a c t

Generative score spaces have recently received increasing attention due to their state-of-the-art performance
in a wide range of recognition tasks. These methods model the distribution of the training data using
probabilistic generative models and derive the feature for each sample based on the generative models.
The derived feature encodes the information of the sample, hidden variables and model parameters
for classification, providing a staged way to integrate the abilities of generative models in inferring hidden
information and discriminative models in classification. The underlying point is that the hidden information
carried by hidden variables in generative models is informative and useful in classification. In this paper, we
propose a general extension for the existing score space methods to exploit class label that encodes rich
discriminative information, when deriving feature mappings. This is achieved by extending the regular
generative models to class conditional models over both observed variable and class label, and deriving
feature mapping over such extended models. The resulted methods take simple and intuitive forms which
are weighted versions of existing methods, benefitting from the Bayesian inference of class label. The
empirical evaluation over two typical generative models and 6 datasets shows its significant improvement
over existing methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Generative score space is a class of principled methods aiming
to integrate the abilities of probabilistic generative models and
discriminative models for classification. In these methods, gen-
erative models are used to drive feature mappings over observed
variables, hidden variables and model parameters while discrimi-
native models are used to perform classification in the derived
feature spaces. The motivations of using generative models to
derive feature mappings are threefold: (1) generative models are
able to discover the information hidden in data by inferring
hidden variables, which is additional and useful for classification;
(2) generative models are good at dealing with structured data,
e.g., variable length sequences or tree structure data; (3) the
derived features are fixed dimension and can be straightforwardly
delivered to discriminative classifiers for classification. Generative
score space is an implementation of hybrid generative–discrimi-
native classification methods [1–6] whose detailed reviews can
be found in [5]. In this paper, we focus on generative score space

due to its competitive performance in a number of challenging
tasks [5], especially in the highly challenging task – image
recognition [7].

Generative score space methods, first proposed in [1], can be
categorized into two classes [6,5]: parameter based methods
and random variable based methods. Let PðxjθÞ be the marginal
distribution of an adopted generative model, where xARD is the
observed variable and θ¼ fθ1;…;θKg is the set of K parameters.
Parameter based methods are represented by Fisher Score (FS) [1].
It derives explicit feature mappings from a given generative model.
The feature mappings measure how a sample affects the para-
meters θ, i.e., differential operation over the log likelihood
log PðxjθÞ with respect to parameters. This method is robust to
the number of hidden variables [6], and shows state-of-the-art
performance in image recognition [7]. Variable based methods
include free energy score space (FESS) [8], posterior divergence
(PD) [6] and augmented sufficient statistics (SS) [9–11]. FESS and
PD derive feature mappings by mainly measuring how well a
sample fits the distribution of the random variables, while SS is
essentially the expectation over the sufficient statistics.

All the above methods derive feature mappings from the
generative model trained using samples from all classes, without
making use of the class label. An extension to utilize class label is
tangent vector of posterior log-odds (TOP) [2] which trains a pair
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of models Pðxjθþ1Þ and Pðxjθ�1Þ using the positive samples and
the negative samples respectively. Then TOP derives the feature
mappings from the maximum a posteriori (MAP) discriminant
function which is defined on the pair of models. Another extension
is proposed in [3] which trains C models using C classes of samples
respectively (i.e., train the model PðxjθyÞ using the samples from
the class y, where yAf1;…;Cg). The method then derives C sets of
feature mappings from the C trained models respectively, and
concatenates them as the final feature mapping. The assumptions
underlying these two extensions are that all the class-conditional
models PðxjθyÞ represent samples equally well, and are equally
important when deriving feature mappings. However, these
assumptions are not always true. For instance, if a sample xt takes
a higher probability on the model θc than on the model θc0 (i.e.,
Pðxt jθcÞ4Pðxt jθc0 Þ), the model θc should represent the sample xt

better than the model θc0 . Moreover, a model can be more
important than others when it represents more training samples.

In this paper, we propose a discriminative extension for
generative score space methods [1,6,5,9–11]. The proposed exten-
sion can fully exploit the class label which is informative in
classification when deriving feature mapping, but release from
the assumptions made in [2,3]. The proposed extension models the
joint distribution of the observed data x and its label y, and applies
two representative score space methods [1,5] to the joint model
respectively. The resulted feature mappings are very simple, i.e.,
the concatenation of the weighted feature mappings respectively
derived from the class-conditional models fθ1;…;θCg. The differ-
ence between the proposed extension and the extension in [3] is
the weights. The weights measure how important a model is in
deriving feature mappings and therefore our extension avoids
making the assumptions in [2,3]. Moreover, we prove that, for
multi-class classification, the error rate of a zero-one loss linear
classifier working with feature mappings derived by the proposed
extension is at least as lower as that of maximum a posterior
(MAP) classifier. It is worth noting that previous score space
methods [1,6,5,9–11] as well as their extensions [2,3] have no
such a guarantee.

The remainder of this paper is organized as follows. In Section 2,
we review related score space methods and two discriminative
extensions. Section 3 proposes our discriminative extension and
justifies its error rate. We evaluate the proposed method and related
methods in Section 4, and draw a conclusion in Section 5. For
readability, we summarize the involved notations in Table 1.

2. Generative score spaces revisit

In this section, we will revisit the generative score space
methods. First, we introduce the variational lower bound of the
log likelihood function of generative models, on which score space
methods work. Then, we review two representative score space
methods [1,5] and two discriminative extensions [3,2].

2.1. Variational lower bound of log likelihood function

Let xARD be the observed variable and X ¼ fx1;…; xNg be a set
of N training samples of the variable x. We consider a general case
that the probabilistic distribution over x is modeled by a hier-
archical probabilistic generative model with a set of hidden
variables H introduced, and is parameterized by a vector of
parameters θ. Let Pðx;HjθÞ be the joint distribution and PðxjθÞ
be the marginal distribution. For most generative models, the
marginal distribution PðxjθÞ is unavailable since the integrationR
Pðx;HjθÞ dH is intractable [12]. A number of approximation

methods [13] are developed to attack this problem. The common
idea of these methods is to construct an approximate posterior
distribution QtðHÞ to estimate the real posterior distribution
PðHjxt ;θÞ. Then we have [12,13]

log Pðxt jθÞ ¼ �KLðQtðHÞJPðxt ;HjθÞÞþKLðQtðHÞJPðHjxt ;θÞÞ ð1Þ
where KL denotes the Kullback–Leibler divergence. The log like-
lihood is decomposed into two terms. The second term measures
the residual error of using QtðHÞ to approximate PðHjxt ;θÞ and
takes zero when QtðHÞ is expressive enough (for instance, QtðHÞ is
given by exact inference). In this case, the first term is the exact log
likelihood. As did in [5,6], we focus on the variational inference
[12] which resorts to a lower bound of the log likelihood

log Pðxt jθÞZ�KLðQtðHÞJPðxt ;HjθÞÞ ¼ �F ðQt ;θÞ ð2Þ
where �F ðQt ;θÞ is the variational lower bound; F ðQt ;θÞ is the free
energy function. A choice for QtðHÞ is that it takes the same form
with P(H) but with different parameters [12]. Note that the above
formulation involves two approximations: (1) using the approximate
posterior distribution QtðHÞ to approach the real posterior distribu-
tion PðHjxt ;θÞ; (2) using the lower bound �F ðQt ;θÞ to approach
the real log likelihood log Pðxt jθÞ. However, using the above two
approximations will not lose generality, because, when QtðHÞ is given
by exact inference methods, the approximate posterior QtðHÞ exactly
equals to the real posterior PðHjxt ;θÞ, and the lower bound
�F ðQt ;θÞ exactly equals to the real log likelihood log Pðxt jθÞ.

2.2. Generative score space methods

The formulations of generative score space methods are based
on the log likelihood function or its variational lower bound.
Although their motivations of the score space methods [1,5,6,10]
are different, their formulations can be written as an unified
expression, i.e., expressing the variational lower bound as the
linear combination of the score function of either score space. In
this section, we will review two representative score space
methods, Fisher score (FS) [1], free energy score space (FESS) [5],
and their discriminative extensions.

2.2.1. Fisher score (FS)
Let θ¼ fθ1;…;θKg be the set of K parameters of an adopted

generative model. For an input sample xt , the i-th element ΦiðxtÞ
of the score function of Fisher score (FS) [1] is defined as the
differential of the log likelihood log Pðxt jθÞ with respect to the i-th
model parameter θi

ΦiðxtÞ ¼∇θi log Pðxt jθÞ or ΦiðxtÞ ¼∇θi ð�F ðQt ;θÞÞ ð3Þ
The right expression is also referred to as gradient FESS (gFESS) in
[5]. For brevity, we refer to both expressions as FS, and use the
right expression in the following part. The complete score function
of FS can be written as

ΦFSðxtÞ ¼ ðΦ1ðxtÞ;…;ΦK ðxtÞÞT

Given the above derivation of FS, the lower bound �F ðQt ;θÞ can
be expressed as the linear combination of the elements of the FS

Table 1
Notation lists.

Notation Description

xARD Observed input data
yAf1;…;Cg Output label indexed by c

S¼ fxt ; ytgNt ¼ 1
Training set of N input–output pairs indexed by t

H Hidden variable set
Pðx;HjθÞ Joint distribution of a generative model parameterized by θ

Q(H) Approximate posterior for the real posterior PðHjx; θÞ
�F ðQ ; θÞ Variational lower bound for the log likelihood log PðxjθÞ
Φðxt Þ Score function or feature mapping for the sample xt

wARD0
;bAR Weight and bias for the linear classifier
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