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a b s t r a c t

A class of fast identification algorithms is introduced for Gaussian process (GP) models. The fundamental
approach is to propose a new kernel function which leads to a covariance matrix with low rank, a
property that is consequently exploited for computational efficiency for both model parameter
estimation and model predictions. The objective of either maximizing the marginal likelihood or the
Kullback–Leibler (K–L) divergence between the estimated output probability density function (pdf) and
the true pdf has been used as respective cost functions. For each cost function, an efficient coordinate
descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free
search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to
demonstrate the effectiveness of the new identification approaches.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gaussian process (GP) models for regression and classification
have received increased attention in the past decade [1–5]. The GP
provides a simple, principled probabilistic approach that is funda-
mentally different from other nonlinear parametric regression
models such as neural networks and support vector machine
(SVM) [6]. In the Gaussian process regression (GPR) modeling
paradigm, a systems output is a data sample drawn from a Gaussian
distribution conditional on its input. The functional mapping of the
system input/output in GPR is assumed unknown, but is a random
function (an infinite dimensional vector), i.e. a process with a
specific covariance function of the input. Being a fully probabilistic
approach, GPR allows probabilistic inference for the system output
to be made by predicting the system output probability density
function conditional on a given input. The GPR model has been
successfully applied to a wide range of applications, e.g. latent
models for dimensionality reduction [3,4] and modeling dynamical
systems [5]. Note that similar to any probabilistic approaches GPR is
based on some general assumptions which are appropriate for a
large class of practical systems. For these systems, GPR can have
additional advantage of being able to quantify the uncertainties at
the sample level, over many other nonlinear functional based
modeling paradigms, e.g. support vector regression.

The predictive output distribution of a GPR model is usually
parameterized by a small number of parameters in the covariance
function (which can be served by a typical kernel function) as well
as the variance of additive noise, which can be regarded as one of
the parameters. Typically, for a given data set the estimation of
GPR model is in general achieved by maximum log marginal
likelihood or just maximum a posteriori estimation [2]. Alterna-
tively the GPR model estimation can be configured as a special
type of probability density estimation problem concerning the
conditional probability of an output variable. It is therefore a
straightforward matter to construct the distance measure based
objective functions between the estimated output probability
density function (pdf) for a given data set and an assumed true
pdf. Recently the Kullback–Leibler (K–L) divergence [7,8] was
integrated with GPR model to obtain an alternative GPR parameter
estimation criterion [9].

The main computational limitation of regression models based
on Gaussian processes is that the associated memory requirements
and computational overheads grow in the order of OðN3Þ due to
the inversion of the covariance matrix. In order to overcome this
limitation a wealth of sparse approximations to GP models have
been proposed (see [2, Chapter 8; 10]). In [10], most of these have
been analyzed via an effective prior placed on a set of latent
variables (pseudo-input points) specifically introduced to achieve
sparse GP approximation. Alternatively Williams and Seeger [11]
proposed a low rank approximation to the kernel matrix and then
applied to Gaussian process classification and regression. The idea
was to generate a reduced-rank approximation to the kernel
matrix using the Nyström method, so that by invoking the matrix
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inversion lemma, the matrix inversion is only applicable to a sub-
matrix of a much smaller size.

In this paper we define a new kernel function which leads to the
associated covariance matrix to have an exact rather than approxi-
mated low rank. By exploiting this structure property both model
parameter estimation and model predictions can be carried out
efficiently. The basic idea is that since a kernel function over two
data points in the input space is an inner product of their respective
mappings in a feature space, an exact low rank covariance matrix can
be obtained by explicitly defining a finite dimensional feature space.
We then propose that the finite dimensional feature vector be in the
form of Gaussian radial basis functions (RBF), each of which is
parameterized by a center vector in the input space. Consequently
our covariance function has a larger number of parameters, including
the variance of noise, RBF width in the feature (kernel) function and a
set RBF center vectors, all of which can be learnt using maximum log
marginal likelihood or by the recently proposed criterion of max-
imizing the Kullback–Leibler (K–L) divergence [9]. For each criterion,
an efficient coordinate descent algorithm is proposed to estimate the
kernel parameters using a derivative free one dimensional search,
and the noise variance using a fast gradient descent algorithm.

This paper is organized as follows. Section 2 introduces the
Gaussian process regression model and the GPR parameter esti-
mation cost function of maximum log marginal likelihood and K–L
divergence based Gaussian process regression model. Section 3
initially introduces the proposed RBF feature vectors and then
analyzes the resultant computational cost reduction in parameter
estimation, model prediction and marginal likelihood evaluation.
Section 4 introduces the proposed fast GPR parameters estimation
algorithms based on the concept of coordinate descent, which
estimates the noise variance and kernel parameters in turn.
Numerical experiments are utilized to illustrate the effectiveness
of the proposed algorithm in Section 5, followed by our conclu-
sions in Section 6.

2. Preliminaries

2.1. Gaussian process model

For a given data set DN ¼ fxn; yngNn ¼ 1, where xnARm, let
X ¼ ½x1;…; xN �T denote the observed input data matrix and also
input space. Y ¼ ½y1;…; yN �T is an observed output vector and is
also the output space. Consider a nonlinear mapping ϕðxÞ :
xARm-F that may be unknown or even have infinite dimension.
A kernel kðxi; xjÞ satisfies the property that it is an inner product in
the feature space F as

kðxi; xjÞ ¼ 〈ϕðxiÞ;ϕðxjÞ〉 ð1Þ
Typical choices of kernel functions include the radial basis func-
tion kðxi; xjÞ ¼ expð� Jxi�xj J2=2ρ2Þ, ρ40 is the width parameter.

Let N ðμ;ΣÞ denote the Gaussian distribution with mean μ and
covariance Σ. In the classical Gaussian process regression (GPR)
model, each sample yn is generated based on

y¼ f ðxÞþε ð2Þ
where f is drawn from a (zero-mean) Gaussian process f �N ð0;KXXÞ
which is dependent only on a specific covariance/kernel function
KXX ¼ fkðxi; xjÞgARN�N , and ε�N ð0;s2Þ. Denote kXx ¼ ½kðx1; xÞ;…;

kðxN ; xÞ�TARN .
The classical Gaussian process regression approach aims to

estimate the predictive distribution pðyjxnÞ for any test data xnAX.
Consider a new test observation xn. Under the Gaussian likelihood
assumption, it is easy to prove [2] that the estimated predictive
distribution conditioned on the given observation is

p̂ðyjxn;X;YÞ �N ðf ðxnÞ; gðxnÞÞ ð3Þ

where

f ðxnÞ ¼ kT
Xxn ðKXXþs2IÞ�1Y ; ð4Þ

gðxnÞ ¼s2þkðxn; xnÞ�kT
Xxn ðKXXþs2IÞ�1kXxn ð5Þ

with I denoting identity matrix with appropriate dimension.
Specifically let a¼ ½a1;…; aN �T ¼ ðKXXþs2IÞ�1Y . The mean of

(3) can be written as

f ðxnÞ ¼ aTkXxn ¼ ∑
N

i ¼ 1
aikðxi; xnÞ: ð6Þ

This form of the prediction exhibits the fact that a GP can be
represented in terms of a number of basis functions according to
the representer theorem [6].

2.2. Estimation of Gaussian process model

In GPR model estimation, the variance of noise is usually regarded
as a parameter and catenated with a small number of parameters in
the kernel function. The mostly used criterion for the estimation of
GPR model parameters is the marginal likelihood pðYjXÞ, which is the
integral of the likelihood times the prior, given as

pðY jXÞ ¼
Z

pðY j f ;XÞpðf jXÞ df ð7Þ

and the log marginal likelihood is given by [2] as

JML ¼ log pðYjXÞ ¼ �1
2
YTðKXXþs2IÞ�1Y

�1
2
log detðKXXþs2IÞ�N

2
log ð2πÞ ð8Þ

Alternatively, recently Hong et al. [9] proposed that the cost
function of the Kullback–Leibler (K–L) divergence [7] between the
true output pdf and its estimator based on both using X as prior
and a GPR model can be used for GPR estimation and this is given
by

KL¼
Z

pðyÞlog pðyÞ
p̂ðyjX;YÞ dy

¼
Z

pðyÞlog pðyÞ dy�
Z

log p̂ðyjX;YÞpðyÞ dy ð9Þ

in which the second term R¼ R
log p̂ðyjX;YÞpðyÞ dy� Eðlog

p̂ðyjX;YÞÞ needs to be maximized. From (3), we have

p̂ðyjX;YÞ ¼
Z

p̂ðyjx;X;YÞpðxÞ dx¼ Eðp̂ðyjx;X;YÞÞ

� 1
N

∑
N

j ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πgðxjÞ

p exp �ðy� f ðxjÞÞ2
2gðxjÞ

 !
ð10Þ

where the plug-in estimator for
R
p̂ðyjx;X;YÞpðxÞ dxwith respect to

the true densities pðxÞ was used. We have

R� JKL

¼ 1
N

∑
N

i ¼ 1
log

1
N

∑
N

j ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πgðxjÞ

p exp �ðyi� f ðxjÞÞ2
2gðxjÞ

 ! !

¼ 1
N

∑
N

i ¼ 1
log

1
N

∑
N

j ¼ 1
pi;j

 !
ð11Þ

where

pi;j ¼
1ffiffiffiffiffiffiffiffiffiffi
2πgj

q exp �
e2i;j
2gj

 !
: ð12Þ

Also, ei;j ¼ yi� f j. fi, gj denote f ðxiÞ and gðxjÞ respectively. Note that
in (9)–(11), since nothing is known about the true density p(y) and
pðxÞ, we approximate KL based on the well known principle of plug
in estimator. This can be fully justified since the approximation
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