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a b s t r a c t

The regularized kernel methods for ranking problem have attracted increasing attention recently, which
are usually based on the regularization scheme in a reproducing kernel Hilbert space. In this paper, we go
beyond this framework by investigating the generalization ability of ranking with coefficient-based
regularization. A regularized ranking algorithm with a data-dependent hypothesis space is proposed and
its representer theorem is proved. The generalization error bound is established in terms of the covering
numbers of the hypothesis space. Different from the previous analysis relying on Mercer kernels, our
theoretical analysis is based on much general kernel function, which is not necessarily symmetric or
positive semi-definite. Empirical results on the benchmark datasets demonstrate the effectiveness of the
coefficient-based algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The ranking problem has gained increasing attention in
machine learning with the fast development of ranking techniques
on recommender systems, drug discovery, and searching engines,
see, e.g., [1–6]. Usually, a ranking method is aiming to find a score
function such that the predicted ranking relation is consistent as
possible as the true order. From different perspectives, various
ranking algorithms have been proposed including RankSVM [7,1],
RankNet [8,9], RankBoost [10], the gradient descent ranking
[11,12], the Bayes subset ranking [13], the P-norm push ranking
[14], and the kernel-based regularized ranking [15–20].

The kernel-based ranking usually can be unified in a Tikhonov
regularization scheme in a reproducing kernel Hilbert space
(RKHS) associated with a Mercer kernel. Based on this regulariza-
tion scheme, the generalization performance of these methods has
been studied in terms of different techniques including stabi-
lity analysis [15–17,20], uniform convergence analysis based on
U-statistics [21,19], and approximation analysis based on operator
approximation [22,12].

Despite these theoretical progresses have been made, two
issues should be further addressed:

� Regularization selection. The previous regularized algorithms are
dependent on the norm square regularizer in a RKHS. The natural
questions are as follows: Is the regularizer suitable for various

ranking tasks? Is there other selection of regularization term? In
fact, the optimal regularization for different tasks may be differ-
ent, and various regularization terms have been used successfully
for classification and regression, see, e.g., ℓ1-regularizer [23–25],
ℓ2-regularizer [26–28], ℓ1=2�regularizer [29], Elastic-net regular-
izer [30], and manifold or Hessian regularizer [31–34].

� Kernel selection. The previous theoretical results rely heavily
on a Mercer kernel, which is symmetric and positive semi-
definite. However, as studied in [26,24,27], the kernel is not
necessarily symmetric or positive semi-definite. In theory, the
wider selection of kernel provides us more flexibility.

To address the above issues, we consider to search the ranking
function in a data dependent hypothesis space, which is defined to
be the linear combinations of basis functions. Inspired by the
coefficient-based regression algorithms in [26,27], we propose a
novel ranking algorithmwith coefficient-based regularization. This
regularization is dependent on the empirical data and the general
kernel, where the kernel is not necessarily symmetric or positive
semi-definite. This characteristic tells us that the theoretical
analysis in [17,22] is not valid directly in the current setting. In
particular, without the reproducing property of kernel, the repre-
senter theorem should be rebuilt. In this paper, we establish its
representer theorem and generalization error bound by analyzing
the data dependent characteristics of the proposed algorithm.

In summary, the main contributions of this paper can be
highlighted as follows:

� A novel ranking algorithm is proposed, which finds the ranking
function in a data dependent hypothesis space. The representer
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theorem is provided for the proposed algorithm, which gives a
simple and fast procedure to implement this algorithm.

� Generalization analysis of the proposed algorithm is estab-
lished in terms of the capacity of the data dependent hypoth-
esis spaces. To the best of our knowledge, this is the first time
to touch the generalization ability for ranking with coefficient
regularization.

� Experimental evaluation on public datasets demonstrates the
effectiveness of the coefficient-based algorithm.

The remainder of this paper is organized as follows. In Section 2,
we introduce the background of ranking and the coefficient-based
algorithm. The generalization error analysis is established in
Section 3 and the experimental evaluation is given in Section 4.
We conclude this paper in Section 5.

2. Coefficient-based regularized least square ranking

Now we recall some basic concepts of ranking problem (see
[17] and references therein for details). Let X �Rn be a compact
metric space and Y ¼ ½0;M� for some M40. The relation between
the input xAX and the output yAY is described by a probability
distribution ρðx; yÞ on Z≔X � Y. x is to be ranked preferred over x0

if y�y040, and lower than x0 if y�y0o0. In particular, y�y0 ¼ 0
indicates no preference between the two inputs.

The least square ranking loss

ℓðf ; z; z0Þ ¼ ðy�y0 �ðf ðxÞ� f ðx0ÞÞÞ2;

is considered in this paper. The expected risk of a ranking function
f is defined as

Eðf Þ ¼
Z
Z

Z
Z
ðy�y0 �ðf ðxÞ� f ðx0ÞÞÞ2 dρðx; yÞ dρðx0; y0Þ:

Given samples z≔fzigmi ¼ 1 ¼ fðxi; yiÞgmi ¼ 1AZm independently drawn
according to ρ, the least square ranking problem aims at finding a
ranking function f z : X-R such that Eðf Þ is as small as possible.

The ranking algorithm usually can be implemented by a
Tikhonov regularization scheme associated with a Mercer kernel.
We call a symmetric and positive semidefinite continuous function
K : X � X-R a Mercer kernel. The RKHS HK associated with the
kernel K is defined to be the closure of the linear span of the set of
functions fKðx; �Þ : xAXg with the inner product 〈�; �〉K given by
〈Kðx; �Þ;Kðx0; �Þ〉K ¼ Kðx; x0Þ (see [35,36]).

Given z and regularization parameter γ40, the following
regularized ranking is introduced in [17]:

~f z;λ ¼ arg min
f AHK

fEzðf Þþγ‖f ‖2Kg; ð1Þ

where Ezðf Þ is the empirical ranking risk defined as

Ezðf Þ ¼
2

mðm�1Þ ∑
m�1

i ¼ 1
∑
m

j ¼ iþ1
ðyi�yj�ðf ðxiÞ� f ðxjÞÞÞ2:

Setting λ¼ ððm�1Þ=2mÞγ, we can rewrite (1) as the following
least square regularized ranking (LSRRank) (see [22,12])

~f z;λ ¼ arg min
f AHK

f ~E zðf Þþλ‖f ‖2Kg; ð2Þ

where

~E zðf Þ ¼
1
m2 ∑

m

i;j ¼ 1
ðyi�yj�ðf ðxiÞ� f ðxjÞÞÞ2:

The generalization ability of (1) has been studied via algorithmic
stability in [17] and operator approximation in [22]. In particular, the

minimizer (2) admits a representation with the form (see [22])

~f z;λ ¼ ∑
m

i ¼ 1
~αz;iKxi ; ~αz;iAR:

In this paper, we consider a coefficient-based ranking scheme
in a data dependent hypothesis space. We just require that K :
X � X-R is a continuous and bounded function. The hypothesis
space for the given sample z is defined as

HK ;z ¼ ∑
m

i ¼ 1
αiKxi : α¼ ðα1;…;αmÞT ARm

( )
; ð3Þ

where Ktð�Þ ¼ Kð�; tÞ. Since each candidate function in HK;z is
determined by the corresponding coefficients, we consider the
following coefficient-based regularizer:

Ωzðf Þ ¼m ∑
m

i ¼ 1
α2
i ; f ¼ ∑

m

i ¼ 1
αiKxi :

The coefficient-based least square regularized ranking (CLSRRank)
is defined as the following scheme:

f z;λ ¼ arg min
f AHK ;z

f ~E zðf ÞþλΩzðf Þg: ð4Þ

Denote the output function f z;λ ¼∑m
i ¼ 1αz;iKxi . Then, the coeffi-

cient vector αz ¼ ðαz;1;…;αz;mÞ is given by

αz ¼ arg min
αARm

1
m2 ∑

m

j;k ¼ 1
yj�yk� ∑

m

i ¼ 1
αiðKðxj; xiÞ

 (

�Kðxk; xiÞÞÞ2þλm ∑
m

i ¼ 1
α2
i

)
: ð5Þ

There are two features for CLSRRank: one is the flexibility
imposed by removing the symmetry and positive semi-definiteness
for the kernel; the other is the efficiency on computation, where αz

in (5) can be solved by a linear system of equations (see Theorem 1 as
below).

Denote the matrix ½Kðxi; xjÞ�mi;j ¼ 1 by Kx and let Ki
x be them-order

matrix ½at �mt ¼ 1, where at ¼ ðKðxi; xtÞÞ;…ðKðxi; xtÞÞT . Let Y ¼ ðyiÞmi ¼ 1
¼ ðy1;…; ymÞT , Yi ¼ ðyi;…; yiÞT , and let I be an m-order unit matrix.
Denote

A¼ 2
m
ðKxÞTKxþλmI� 1

m2 ∑
m

i ¼ 1
ðKi

xÞTKx�
1
m2 ∑

m

i ¼ 1
ðKxÞTKi

x ð6Þ

and

B¼ 2
m
ðKxÞTY�

1
m2 ∑

m

i ¼ 1
ðKi

xÞTY� 1
m2 ∑

m

i ¼ 1
ðKxÞTYi: ð7Þ

Now we present the following representer theorem.

Theorem 1. The minimizer f z;λ in (4) can be represented as

f z;λðxÞ ¼ ∑
m

i ¼ 1
αz;iKðx; xiÞ;

where αz ¼ ðαz;1;…;αz;mÞT ARm is the unique solution of linear
system

Aα¼ B: ð8Þ

Proof. Note that

~E zðf ÞþλΩzðf Þ

¼ 2
m

∑
m

i ¼ 1
ðyi� f ðxiÞÞ2�

2
m2 ∑

m

i;j ¼ 1
ðyi� f ðxiÞÞðyj� f ðxjÞÞþλΩzðf Þ

¼ 2
m
‖Kxα�Y‖22þλmαTα� 2

m2 ∑
m

i ¼ 1
ðYi�Ki

xαÞT ðY�KxαÞ:
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