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Because of the excellent ability to characterize the sparsity of natural images, #;-norm sparse
representation (SR) is widely used to formulate the linear combination relationship in dictionary-
learning-based face hallucination. However, due to inherently less sparse nature of noisy images,
Laplacian prior assumed for #;-norm seems aggressive in terms of sparsity, which ultimately leads to
significant degradation of hallucination performance in the presence of noise. To this end, we suggest a
moderately sparse prior model referred to as a Gaussian-Laplacian mixture (GLM) distribution and
employ it to infer the optimal solution under the Bayesian framework. The resulting regularization
method known elastic net (EN) not only maintains same hallucination performance as SR under noise
free scenarios but also outperforms the latter remarkably in the presence of noise. The experimental
results on simulation and real-world noisy images show its superiority over some state-of-the-art
methods.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Face super-resolution, or face hallucination, refers to the technique
of estimating a high-resolution (HR) face image from low-resolution
(LR) face image sequences or a single LR one. Face hallucination is
extensively used for pre- and/or post-processing in video applications,
such as video surveillance. It is universally acknowledged that current
face hallucination methods fall into three categories: interpolation,
reconstruction-based and learning-based methods. Among them,
learning-based methods have attracted much attention since they
can provide high magnifying factors.

Learning-based methods can date back to the early work pro-
posed by Freeman et al. [1] who employed a patch-wise Markov
network to model the relationship between LR images and the HR
counterparts. Afterwards, Baker and Kanade [2] developed a Baye-
sian approach to infer the missing high-frequency components from
a parent structure with the help of training samples, and first coined
the term “face hallucination”. Following their pioneering work, Liu
et al. [3] presented a two-step statistical modeling approach which
integrates global structure reconstruction with local detail refine-
ment. Chang et al. [4] proposed a neighbor embedding (NE) method,
which merely uses K nearest neighbors instead of the entire training
set for reconstruction. Ma et al. [5] introduced a position-patch
based method to estimate a HR image patch using the same position
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patches of all training face images. As far as accuracy and stability
are concerned, the above-mentioned representation methods are
unsatisfactory. Specifically, ridge regression (RR) employed by Ref.
[3]is hard to capture salient properties of natural images, while least
squares (LS) estimator in Refs. [4,5] fails to guarantee the stability of
solution.

Recently, considerable effort has been spent in designing alter-
native sparse representation (SR) based face hallucination. Yang et al.
[6] are the first to introduce #;-norm SR to face hallucination, who
proposed a local patch method with respect to coupled over-complete
patch dictionaries to enhance the detailed facial information. Lately,
Zeyde et al. [7] came up with a modified version by using a different
training approach for the dictionary-pair and gained improved results
and high efficiency as well. In Ref. [8], authors presented a dual-
dictionary learning scheme to recover more image details, in which
not only main dictionary but also residual dictionary is learned by
sparse representation.

In addition to the generic sparsity prior in the above work [6-
8], some specific image priors can be further exploited to boost the
performance of SR based image restoration. Considering facial
positions, Jung et al. [9] advanced a position-patch face hallucina-
tion method with LS [5] replaced by SR algorithm. Motivated by
nonlocal similarity of image statistics, Lu et al. [10] put forward
geometry constrained sparse coding (GCSR) for single image
super-resolution. Very recently, Dong et al. [11] proposed non-
locally centralized sparse representation (NCSR) to explore the
image nonlocal self-similarity. Methods in Refs. [10,11] can obtain
good estimates of the sparse coding coefficients, whereas, without
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the help of high frequency components from face database exam-
ples, they may fail to recover visual details under large magnifica-
tion. In a multi-scale dictionary method [12], local and non-local
priors are integrated simultaneously, with the local prior suppres-
sing artifacts and the non-local prior enriching visual details. Such
similarity-guided methods [10-12] promote the learning perfor-
mance of SR algorithm and demonstrate impressive results for
generic images. However, when the self-similarity assumption does
not hold well (e.g., human face images), their performance will be
considerably restricted, especially for noisy images since noise
damages the image self-similarity.

Essentially, SR based methods incorporates sparsity prior knowl-
edge as a constraint on the solution to obtain a global unique and
stable one. In our empirical observations, however, noisy images
exhibit less sparsity than noise free images in solution space and
Laplacian prior assumed for #;-norm does not quite agree with the
actual distribution. Consequently, just as pointed out by Ref. [13],
#1-norm is aggressive in terms of sparsity, leading to considerable
degradation of hallucination performance in the presence of noise.
In this paper, we manage to seek a more fitted prior model for
hallucinating noisy face images, which is referred to as Gauss—
Laplacian mixture (GLM) distribution. GLM is a discrete mixture of a
Gaussian distribution and a Laplacian one, which was introduced by
Kanji [14] as a model for wind shear data. By placing a GLM prior on
solution, we can derive a moderately sparse regularization method
under Bayesian framework, which turns out to be elastic net (EN)
[15]. Our method maintains the same performance as #;-norm SR
based methods under noise free conditions while outperforms the
latter in the presence of noise. Experimental results on simulated
noisy images as well as real-world images validate its effectiveness.
The main contributions are as follows:

(1) Our study on statistical properties of face hallucination beha-
vior reveals that noisy images are less sparse than noise free
images, and thus a relatively conservative GLM distribution is
introduced to model coefficient prior.

(2) We are the first to introduce EN to face hallucination and
achieve satisfactory hallucinated results in the presence of noise.

(3) An automatic estimation way for regularization parameters is
devised to speed up coefficient training.

The remainder of this paper is organized as follows. Section 2
particularly introduces the proposed method. Various experimen-
tal results are shown in Section 3. Section 4 concludes the paper.

2. Proposed method

Face hallucination is typically a linear inverse problem. In this
part, following the well-known maximum a posteriori (MAP) esti-
mation framework, we employ GLM to infer the optimal solution of
this linear problem:

Xx=Yw+e (M

where x € RV is a N-dimensional observation vector, Y e RVM is a

training set (also called dictionary) consisting of M basis images with
each column being one, and & stands for reconstruction error. The
solution denoted by M-dimensional vector w=[wy, W>, ..., wy]"
consists of a set of linear combination coefficients. Each entry in w is
associated with an individual base in the training dictionary.

2.1. Modeling prior with GLM

A variety of image prior models have been suggested to
formulate the appropriate prior knowledge of natural images.
For example, widespread sparsity prior assumes that coefficient

vector w is governed by i.i.d. zero-mean multivariate Laplacian
distribution, namely,
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which just corresponds to classic #;-norm sparse representation.
Scale parameter u :% indicates the diversity and o, is standard
variance of coefficients.

Another often adopted prior for coefficient vector w is Gaussian
distribution in the following form

Pr(w) =

i
PG(W)‘(zﬂaav>M/2‘Xp< 237, ®

where || ||3 denotes squared #,-norm and is actually associated
with ridge regression.

In contrast to the sharp peak at zero in Laplacian prior, Gaussian
prior is relatively conservative in the sense of sparseness. Never-
theless, as stated in Ref. [13], due to its non-singularity at origin,
the resulting squared #,-norm is non-sparse. To enforce the predic-
tion accuracy for noisy images while not completely lose variable
selection functionality of the model, we therefore employ GLM
distribution to represent the latent prior in coefficient space, which
is formulated as follows:

P(w) = aPy(w)+(1 —a)Pg(w) “4)

This mixture is characterized by the mixing proportion
a, 0<a <1, which denotes the fraction of Laplacian in the
distribution. Because this fraction is generally unknown a priori,
it has to be estimated from the data.

For simplification, we optimize a by minimizing error between
actual and assumed distributions instead of using complex EM
algorithm [16]. Suppose {H(i)|1 <i<L} is discrete actual distribu-
tion obtained by histogram analysis method, where L is sampling
number;{P;(i)|]1 <i<L} and {Pg(i)|]1 <i<L} are fitted Laplacian
and Gaussian distributions by maximum likelihood (ML) method,
the cost function in minimum squared error is expressed as

o = arg min i {aPL(i)+ (1 — a)P¢(i) — H(i)}? (5)
a i=1

whose close-form solution is given by

L
X (Pc(d) = H}{Pc(i) —Pr(i)}
af = =1 ; 6)
> (P(i)—Pg(i))?

1=

Note that, the solution should be clipped to the range of [0, 1],
inclusively.

The plausibility of GLM model can be verified by an experi-
ment, where original noiseless images and noisy images corrupted
by Gaussian noise with two different standard deviations of =5
and 10 get involved. We carry out ordinary linear regression analy-
sis to acquire regression coefficients and then use histogram
method to get their actual distribution. The fitted distribution is
generated with ML estimator from available coefficient samples.
Finally, the probability density curves of the actual distribution
and three kinds of fitted ones (Laplacian, Gaussian and GLM) are
depicted in Fig. 1.

By briefly examining the actual distribution histograms under
different noise levels in Fig. 1, we can find that their peaks at zero
indeed decline with respect to noise interference. In other words,
the coefficients become less sparse with the increasing amount of
noise (a signal is sparse if most entries of the coefficient vector are
zero or close to zero). Fig. 1(a) shows Laplacian distribution is well
fitted to the actual one under noise free conditions. As shown in
Fig. 1(b) and (c), with the reduced sparsity resulting from noise,
sharply-peaked Laplacian turns far over-sparse relative to actual
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