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a b s t r a c t

In this paper, a hybrid learning model of imbalanced evolving self-organizing maps (IESOMs) is proposed
to address the imbalanced learning problems. In our approach, we propose to modify the classic SOM
learning rule to search the winner neuron based on energy function by minimally reducing local error in
the competitive learning phase. The advantage of IESOM is that it can improve the classification
performance through obtaining useful knowledge from the limited and underrepresented minority class
data. The positive and negative SOMs are employed to train the minority and majority class, respectively.
Based on the original minority class, the positive SOM evolves into a new stage that might discover novel
knowledge. The purpose of convergent evolution is to recurrently search the fitness value via minimal
mean quantization error in the feature space, which can motivate the offspring individuals to move
toward the center of positive SOM so as to form more explicit boundary. The iterative learning procedure
is used to adaptively update the incremental feature maps and create more minority instances to
facilitate learning from imbalanced data. The effectiveness of the proposed algorithm is compared with
several existing methods under various assessment metrics.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Imbalanced learning [1] is a popular research topic for a wide
range of applications in data mining domain. For the real-world
datasets, most of the examples perform the “normal” characteristic
while the minority part of data fall in the “abnormal” group. The
previous work [3] showed that the detection of abnormal data can
reduce the computational cost for a training classifier. For imbalanced
data learning, the minority class labels are supposed to equally
assigned to these abnormal data. The representative imbalanced data
are generally involved in a variety of aspects. For instance, for financial
analysts, a huge amount of data are processed and analyzed by
various statistical tools, but the existence of the abnormal data brings
about more difficulties to precisely learn the useful knowledge from a
given dataset. Other typical examples of imbalanced learning include
biomedical data analysis (e.g., cancer detection), spam detection,
among others. The number of data might be too limited to learn
the type of rare cases that are obtained under different conditions.
Typically, the ratio of the minority class to majority class is remarkable
from 1:100 to 1:100,000 [6]. In this paper, computation intelligence
approaches are investigated to tackle these challenging issues.

Most previous work focused on the binary classification problems
[2]. The others [33,34] also tried to employ the multi-class data and
define the class with a small number of data as the minority class

while the other data are merged into the majority class. Although the
minority class can be recognized by classifiers, the artificial majority
class might be more likely to be misclassified. The knowledge of
imbalanced data is complex especially when we solve the multi-class
problems, since the amounts of some data classes are the same or
similar to each other, which increases the difficulty to artificially select
the minority class. The imbalanced learning problems can be sum-
marized as two categories: absolute imbalance and relative imbalance
[4]. The absolute imbalance occurs in the situation when the minority
instances are significantly scarce and implicit, whereas the dataset
with relative imbalance can show explicit data distribution but still
rare quantity for minority examples. The characteristic of rare
instances exists in the typical imbalance where the limited represen-
tative data lead to difficult learning regardless of between-class
imbalance. The other form of imbalance is within-class imbalance. It
concentrates on the representative data distribution for the sub-
concepts within a class. The within-class imbalance problem seems to
be more difficult than the datasets with the concepts in a similar
characteristic [5].

A variety of solutions have been proposed to address the imbal-
anced learning. To understand this issue comprehensively, most of the
state-of-the-art methods are generalized as the following categories.
A critical and comprehensive survey on imbalanced learning can be
found in [1].

(a) Sampling methods: Random oversampling for minority
instances and undersampling for majority instances can facilitate
change of the distribution for original dataset [7]. The informed
undersampling using KNN [8] is also presented to achieve
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undersampling. To overcome the disadvantages of the basic
sampling methods, the synthetic minority oversampling technique
(SMOTE) [9] is to select one from the nearest neighbors for each
original minority example, and generate synthetic minority data,
based on the linear interpolations between the original examples and
randomly selected nearest neighbors. Borderline-SMOTE [10] only
generates synthetic data for the minority instances near the border
rather than every original minority instance. ADASYN [11] is pro-
posed to adaptively create the different quantities of synthetic data
corresponding to the density distribution. Other sampling strategies
are integrated with ensemble learning techniques [26,49] to address
the imbalanced learning issue. The SMOTEBoost [12] algorithm is
achieved via combining SMOTE with Adaboost.M2. RAMOBoost [24]
adjusts the sampling weights of minority class examples based on
the data distributions.

(b) Cost-sensitive learning methods: Unlike various sampling
strategies to change the data distribution, the goal of cost-sensitive
learning [35,37] is to calculate the costs for misclassification through
different cost matrices. AdaCost [36] adopts the cost-sensitive learn-
ing with boosting. Cost-sensitive decision tree [13] can prune the
scheme for imbalanced data with misclassification costs through
specifying decision threshold. Cost-sensitive neural network models
[29,38] can be widely applied for imbalanced learning.

(c) Kernel-based learning methods: The kernel-based learning
approaches include many state-of-the-art techniques for the
application of data mining domain [25,30]. A Granular Support
Vector Machines-Repetitive Undersampling (GSVM-RU) algorithm
[14] carries out the iterative learning procedure based on GSVM.
Kernel-boundary alignment (KBA) [23] is proposed to modify the
kernel matrix via a kernel function based on the distribution of
imbalanced data. There is another typical kernel-based learning
algorithm for maximizing area under curve (AUC) of the receiver
operating characteristic (ROC) graph [42].

(d) Active learning methods: These active learning methods
[39–41] are traditionally adopted to handle the special issues
relevant to training data without class labels (unlabeled data). As
mentioned in [16], the criteria of termination for active learning
methods are investigated to apply for the class imbalance issues
on word sense disambiguation (WSD) through maximal confi-
dence and minimal error.

In this paper, the hybrid learning model of imbalanced evolving
Self-Organizing Maps (IESOM) with Genetic Algorithms is pro-
posed to solve the imbalanced learning issue. Unlike Kohonen0s
original learning rule, the proposed method improves the way
to search the winner neuron by stochastic gradient descent on
energy function, which can minimally reduce local error in the
competitive learning of SOM. Additionally, the advantage of IESOM
can improve the classification performance by learning the impli-
cit knowledge from the subset of the limited and underrepre-
sented minority data.

The remainder of this paper is organized as follows. The funda-
mental mechanisms are introduced in Section 2. Section 3 presents
the IESOM algorithm and framework and discusses its advantages on
the imbalanced learning problem. Based on this, the performance of
the proposed approach is compared with other commonmethods for
imbalanced learning problems in Section 4. We also present more
detailed analysis and discussion on the effectiveness of the proposed
method. Finally, a conclusion and a brief discussion of future work
are provided in Section 5.

2. The fundamental mechanisms

In this section, the fundamental knowledge is introduced to
support the proposed method. The detailed information can also

facilitate us to comprehensively understand the crucial steps for
the framework design.

2.1. Self-organizing map

Traditional SOM [17,32] is a powerful unsupervised learning
approach that tries to stimulate synaptic neurons to search the most
similar reference vector for the training instances, which can be
considered to simply represent the input layer. Generally speaking,
the procedure of unsupervised SOM [20,50] is viewed as nonlinear
transformation from higher dimensional input space to lower dimen-
sional (one- or two-dimensional) map lattice, involving the local
search based on interactively lateral influence of competitive neurons.
The vector quantization technique is mentioned in Eq. (1) to search
the best matching unit (BMU) by minimizing quantization error. Here
we use X to represent dataset, and assume that the vector xiAX � Rn

is the input example and mj is a reference vector. These two vectors
have the identical dimensions in the feature space

iðxÞ ¼ argmin
j

Jx�mj J ð1Þ

The topology-preserving map arranges specific geometric struc-
ture for the neurons on the feature grid to search the data clusters via
competitive learning. The winner neurons are on the centroids of the
topological neighborhood [27] of cooperative neurons. The simila-
rities between winner neuron and synaptic neuron are configured by
the lateral interactions. A common kernel function for topological
neighborhood is Gaussian function hj;iðxÞ, which denotes the degree of
interactive connections between two adjacent neurons. In Eq. (2), s
and dj;iðxÞ represent the radius of the topological neighborhood and
the lateral distance between the winner neuron i(x) and synaptic
neuron j based on the position information of the feature map,
respectively

hj;iðxÞðtÞ ¼ exp � d2j;iðxÞ
2s2ðtÞ

 !
ð2Þ

dj;iðxÞ ¼ Jrj�riðxÞ J ð3Þ

sðtÞ ¼s0
s1

s0

� �t=Nc

ð4Þ

where t represents the training time; rj is a 2-D position vector of
neuron j; Nc denotes the convergence iterations; s0 and s1 are the
initial and terminal neighborhood radii, respectively.

Based on the previous learning stages, the feature lattice can be
generated in terms of adjusting each reference neuron weight
mj(t) as follows:

mjðtþ1Þ ¼mjðtÞþαðtÞhj;iðxÞðtÞðxðtÞ�mjðtÞÞ ð5Þ

where α is the learning rate and αðtÞ ¼ α0ðα1=α0Þt=Nc .
There are some key features contributing to its learning

capability: the competitive computation between input data and
winner neuron, the selected neighborhood function, the number
of neurons as well as the learning rate.

2.2. Energy function based self-organizing map

As the most novel form of unsupervised learning in the neural
networks, SOMs implement topological preservation and dimen-
sionality reduction by smoothing the clusters regarding to the
feature lattice [28]. However, the original SOM algorithm does
not optimize the energy function [18,31]. Although SOM involves
a trade-off between the quantization accuracy and topological
smoothness, no explicit learning rule merges these two properties
into an energy function. To modify the original learning rule, the
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