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ABSTRACT

We proposed an algorithm for the efficient non-orthogonal joint diagonalization of a given set of
matrices. The algorithm is based on the hybrid trust region method (HTRM) and its optimization
approach, on which the efficiency of the method depends. Unlike traditional trust region methods that
resolve sub-problems, HTRM efficiently searches a region via a quasi-Newton approach, by which it
identifies new iteration points when a trial step is rejected. Thus, the proposed algorithm improves
computational efficiency. Under mild conditions, we prove that the HTRM-based algorithm has global
convergence properties together with local superlinear and quadratic convergence rates. Finally, we
apply the combinative algorithm to blind source separation (BSS). Numerical results show that this
method is highly robust, and computer simulations indicate that the algorithms excellently performs
BSS.

Blind source separate
Superlinear convergence

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the joint diagonalization (JD) of fourth-order cumulant eigen-
matrices [1,2] was proposed, the JD technique has been an essential
tool in signal processing, especially in blind source separation (BSS)
and array processing applications; JD has been extensively studied
from both theoretical and algorithmic perspectives [2]. Available JD
algorithms can be classified into two core categories: orthogonal [3-5]
and non-orthogonal forms [6-9]. In the application of orthogonal
diagonalization to BSS, observed signals are pre-whitened, so that they
are uncorrelated and have unity variance. However, preprocessing
during the ‘whitening’ operation can adversely affect the performance
of separated signals because the statistical error introduced in this
stage cannot be corrected in the “effective separation” stage [8]. The
limitations of orthogonal JD prompted the development of non-
orthogonal ]D algorithms [6-9]. In particular, the algorithm developed
by Li and Zhang [9] can avoid zero solutions and any degenerate
solution (nonzero but singular or ill-conditioned solutions). The
aforementioned features of the algorithm enhance the robustness
and efficiency of non-orthogonal JD.

In [6], two algorithms based on gradient descent approaches
are presented: the first is based on a classical gradient approach,
and the second is grounded on a relative gradient approach. Two
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algorithms adopt respectively
AB = —/JHVCBD(B) and AB= —,MTVCBD(B)B

dCpp(B)
0B*

(Be CMN VCyp(B)=2 )

where Cpp(B) denotes the cost function; B” stands for the complex
conjugate of complex matrix B; o is the partial derivative operator;
e OF upr represents a small positive number called the step-size or
adaptation coefficient, which serves as the degressive direction of
the cost function. Although Cpp(B) will decrease under condition
that step-size is a small enough positive number, the condition
debases the computational efficiency as well. The intrinsic draw-
back of the gradient descent based algorithms is that they often
produce the ‘zigzag’ phenomenon when the iterative point is close
to the optimal solution; under such a situation, the algorithms will
very slowly converge to or fail to generate an optimal solution.
Conversely, trust region methods have been proven to be highly
efficient in addressing optimization problems [10]. Trust-region
methods define a region around the current iterate within which
they trust the model to be an adequate representation of the
objective function, and then choose the step to be the approximate
minimizer of the model in this trust region [11]. These methods
are robust, can be applied to ill-conditioned problems, and have
strong convergence properties under mild conditions. Many
researchers have recently studied nonmonotone adaptive trust
region methods (NATRM) for unconstrained optimization pro-
blems [12,13]. NATRM can automatically produce an adaptive trust
region radius whenever a trial step is rejected, and will decrease
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the functional values after finite iterations. The main disadvantage
of NATRM lies in identifying new trial iterations; it requires
considerable computational time to repeatedly solve sub-
problems. Motivated by rectifying this shortcoming and inspired
by Nocedal and Yuan [14], we propose a hybrid trust region
method (HTRM) that adopts a different search approach at each
iteration. The search direction dy=x;,1—x, is generated by
solving the sub-problem of the cost function (discussed in
Section 3). If dy, is rejected, the sub-problem does not need to be
resolved. Using a quasi-Newton method (QNM), we compute the
search direction dy = (— By Vf(xe)). (Br ~ V2f(xy)) is updated using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula to main-
tain the positive definitiveness of By [15].

The rest of the paper is organized as follows. In Section 2, we
describe the non-orthogonal JD problem, then derive the formula of
the gradient and Hessian matrix of the cost function. In Section 3, we
introduce the HTRM-based algorithm, prove that it is well defined,
and identify its convergence properties. The numerical results are also
presented in this section. In Section 4, we apply the general algorithm
to a BSS problem and the results of the correlation simulation are
discussed in Section 5. The conclusions are summarized in Section 6.

2. Non-orthogonal joint diagonalization problem

The non-orthogonal JD problem is stated as follows [6,8,9,16]: we
consider a set ¥ ={M;li=1,2, - - -K, M;jeR"™M} (or M;e C"M,
depending on the applications). Every M; admits the following
decomposition:

M; =AAA" 1)

where (-)" represents the transpose operator. The approximate JD
problem seeks a ‘diagonalizing matrix’ A e RN (N<M) and K
associated diagonal matrices A1,A,, - - - Ag € RV*N, such that

- K -~ o~
rA, =3 IMi—ArA 12, YMiew )
i=1

is minimized, in the application of BSS, without loss of generality, let
M=N (the proof can be seen in Appendix A), I+l denotes the
Euclidean norm.

Premultiplying M; in Eq. (1) by A’s inverse matrix A and
postmultiplying by AT yields

AMAT =4, i=1,2, K 3)
In estimating matrix A instead of A itself, the following
quadratic cost function should be considered:

K
FA.(A)= Y IAMAT -2, YM;e¥ )
i=1

Comparing with the cost function F(A)= YX_, 1 Off(AM;A") 112,
where the matrix operators Diag{} and Off{<} are respectively
defined as

g1 0 0
DiagC = O C?Z 0 and
0 0 - cy
c;1 0 - 0
e
0 0 - c

the former cost function is more general, I?(A) is the special case
when the conditions A; = Diag{AM;AT}(i=1,2, - - -,K) hold, but
the conditions are very strict to the problem of minimizing cost
function and can hardly be satisfied.

The following theorem illuminates, F(A, {A;}) converging zero
is the sufficient condition for A convergence to be a separable
matrix.

Lemma 1. if F(A, {A;})— 0, then AA = P;D, where A is the real mixing
matrix of BSS problem, D is a nonsingular diagonal matrix and P; is
the N-order permutation matrix (it contains exactly one element 1 in
each row and each column).

Proof. "~ IAMAT — Al -0, i=1,2,---,K, as _F(A, {A})—0,
thereof, AM;A" = A;, on the other hand, M,»:AA;AT(Ang(S(t)ST
(t—1)), S(t) is the vector of source signals), so AM;AT :A(AA;AT)
AT = (AA)AUAA)T = A;. Let C = AA, then CA|CT = A;. Moreover, A; and
A} are nonsingular diagonal matrices, supposing C # P;D, it divide
two cases:

(1) there only exist N+1 nonzero elements in the N order
nonsingular square matrix C, thereof, without loss of generality,
supposing its diagonal elements are nonzero, thereof, there
are two nonzero elements in the m-th row and the k-th column,
i.e. Cmm, Cmk and cy are nonzero elements, SO, (A)nk =
cmm(Ag)mm0+cmk(A;)kk(CT)kk = Ck(ADwiCrk # 0; this contradicts
the fact that A; is a diagonal matrix.

(2) There exist more than N+1 nonzero elements in the N order
nonsingular square matrix C,

N
(Ai)mn = (CA;'CT)mn = k;](c)mk(A;)klc(CT)kn

N N
= ¥ (OnADik (O = . Y CnkADCnl <m,n <N,
1 k=1

k=
m#n, i=1,2,---,K.

The elements of matrix C are independent of each other,
thereof, it is impossible to make the K(N?>—N) off-diagonal
elements (A;),,, equal to zero, so it also contradicts the fact
that 4; is a diagonal matrix.

Base on above analysis, we conclude that AA = P;D.

Lemma 1. indicates that A converges in a separable matrix when
F— 0 (in practice, such theorem indicates that F— ¢, € is a very small
positive number). In other words, a BBS problem can be transformed
into an unconstrained optimization problem based on the Lemma.

Some algorithms are dedicated to a unitary matrix A and have
led to Jacobi-like algorithms. When these algorithms are applied in
the BSS context, the unitary constraint can be fulfilled by a
classical whitening of the observations. However, this preliminary
stage has been proven to limit the attainable performance. In this
paper, we are proposing a solution to the non-unitary JD problem
by relying on the optimization of the cost function [Eq. (4)] to
estimate matrix Ae RN, To this aim, we use the hybrid trust
region algorithm. First, several notations are introduced for the
next derivation. Let tr{-},d{-}, vec{-}, ® denote the trace, differ-
ential, and the row vector operators, as well as the Kronecker
product, respectively. The derivation of cost function’s gradient
and Hessian matrices can be seen in Appendix B.

3. Algorithm based on the hybrid trust region method

We consider the following unconstrained optimization problem:
min f(x),x e R", (5)

where f:R"—R is a continuously differentiable function. The
optimization problem has become an important research focus
given its wide range of potential applications. Throughout the
paper, we introduce some notations for convenience. Il - | denotes
the Euclidean norm on R"; {x;} is a sequence of points generated by
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