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a b s t r a c t

We investigate the role of redundancy for exploratory learning of inverse functions, where an agent
learns to achieve goals by performing actions and observing outcomes. We present an analysis of linear
redundancy and investigate goal-directed exploration approaches, which are empirically successful, but
hardly theorized except negative results for special cases, and prove convergence to the optimal solution.
We show that the learning curves of such processes are intrinsically low-dimensional and S-shaped,
which explains previous empirical findings, and finally compare our results to non-linear domains.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many learning scenarios, agents perform actions in some action
space, whereas outcomes are measured in a different observation
space. We assume that these two spaces are connected by a forward
function that turns actions into observations. This function can be
executed by the agent, but is not explicitly known to the learner. This
is the basic setup, for instance, for reinforcement learning, where the
agent executes actions and can observe rewards. In order to achieve
some desired behavior an inverse function is needed that returns an
appropriate action. A standard example is motor learning, where the
observation space consists of certain world states such as end-
effector positions. Possible actions can range from joint angles or
forces to entire sequences of movements. A forward function turns
the actions into outcomes like effector positions. Learning a corre-
sponding inverse without explicit knowledge of the forward function
has to rely on exploration schemes that generate example data
usable for supervised learning.

Explorative learning in such domains is an active field of
research and far from trivial. One substantial challenge is to deal
with the redundancy in such domains: often multiple actions are
mapped on the same outcome, such as different joint angles of an
arm resulting in the same hand position. If redundancy is present,
learning cannot be phrased as standard regression problem any-
more because multiple correct solutions exist for a learner. As a
further escalation, non-linear problems with redundancy have non-
convex solution sets which prohibit learning from different

solutions [1]. Often, the action space is very high-dimensional,
which makes exhaustive exploration unfeasible. Yet, a number of
practically efficient exploration and learning schemes have been
proposed. The key is to structure exploration in a goal-directed
manner. This idea has been used for tuning of well initialized
inverse functions in several models [2–4]. Goal-directed exploration
is particularly beneficial for learning from scratch, because it is
applicable in very high-dimensional spaces and allows us to avoid
inconsistencies [5]. Unfortunately, only very few theoretical results
are available why and when such schemes can be successful. To the
opposite, Sanger [6] proved that certain explorative learning for-
mulations can fail systematically even in simple domains.

This paper aims to deepen the theoretical understanding of
such learning schemes in redundant domains. We first formalize
the general problem and discuss its difficulties. Then, we provide a
thorough analysis of the linear case with redundancy, which is
applied to goal-directed exploration. To our knowledge, we
thereby provide the first positive theoretical outcomes on such
learning by proving convergence to an optimal solution if noise is
added to the exploration process. We analyze temporal aspects of
exploration and learning and show how learning follows tempo-
rally S-shaped learning curves along low-dimensional manifolds
through the action space. We finally discuss our results in the light
of phenomena and empirical results in non-linear domains.

2. Two spaces and their gradients

We consider an agent that can execute actions q in some action
space QDRm. An action results in an outcome xAXDRn in the
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observation space. The relation between both variables is defined
by the forward function f ðqÞ ¼ x. For learning, we do not know the
forward function, but can query the outcome by means of execu-
tion of an action by the agent. This lack of information is crucial to
distinguish the exploratory approach from learning schemes that
use knowledge of the forward function. The agent is asked to
achieve some desired observation, or “goal” xnAXnDX. The agent
has to generate an action q̂, such that the outcome x¼ f ðq̂Þ
matches the goal xn. The agent's selection of an action can be
denoted by a function gðxnÞ ¼ q̂. The learning task is to obtain a
function g that can realize all goals:

f ðgðxnÞÞ ¼ xn 8 xnAXn ð1Þ

Hence, g must be a right-inverse function of f on the set of goals Xn.
Inverse functions do not always exist, so we need to require that f
is surjective with nrm. For nom the problem is ill-posed since
different actions must result in the same outcome, which is
referred to as redundancy. An exemplary situation of action and
observation space is shown in Fig. 1.

This formulation makes an instantaneous link between actions
and observations, which can be done for many coordinative
problems like inverse kinematics [5], parametrized throwing
movements [7], facial expressions [8], or, hypothetically, playing
golf [6]. The formulation neglects cases in which the outcome also
depends on some internal state (for instance in inverse dynamics
problems [9]), but results are still applicable to some extent if the
problem can be localized (see Section 5.1).

2.1. The learning task in the observation space

In the observation space, obtaining a right-inverse function can
be directly formulated as optimization problem. We parametrize
the function g with adaptable parameters W. The performance
error EX naturally measures how much an inverse estimate g
deviates from the solution in Eq. (1). For a finite set of goals
Xn ¼ fxn0;…; xnK�1g we can write

EXðW ;XnÞ ¼ 1
2K

∑
K�1

k ¼ 0
‖f ðgðxnk ;WÞÞ�xnk‖

2 ð2Þ

Learning can, for instance, be formulated as gradient descent on
this error functional [1,10]. The central difficulty is that computing
the performance gradient ∂EX=∂W requires analytic knowledge
about the forward function: Since W appears inside f ð�Þ, differ-
entiation of EX with respect toW requires to know the derivative of
f. In general, inverse problems do not provide a teacher that could
indicate such optimal gradient directions.

2.2. Explorative learning in the action space

If the performance gradient is not available, a feasible way
to probe knowledge is to generate examples (x,q) by exploration
[2–6,11,12]. The setup allows us to start in the action space by
performing some ql, and then observe the outcome xl ¼ f ðqlÞ. A data
set D¼ fðxl; qlÞgl can be used to learn in the action space. The action
error on D measures how well the inverse estimate fits the data:

EQ ðW ;DÞ ¼ 1
2L

∑
L�1

l ¼ 0
‖gðxl;WÞ�ql‖2: ð3Þ

Reducing this error can be approached by descending the action
gradient ∂EQ=∂W . Importantly, this scheme is not a mere data-driven
version of the optimization of EX in observation space. In the action
error we can replace xl ¼ f ðqlÞ and see that the error evaluates on
gðf ðqlÞÞ�ql. Reducing this deviation corresponds to learning a left-
inverse function g. This reflects the “reverse” sampling from the
learner's output ql to a correct input xl. In contrast, standard
supervised schemes, including explorative ones like active learning
[13], require a mechanism to probe a correct output qn for the
learner, given an input xn. Autonomous learning scenarios do not
provide such an “oracle”, which would reflect deep prior knowledge.

The learning task is to obtain a right-inverse function, which
corresponds to minimizing EX in observation space. Learning from
exploratory data, however, minimizes EQ in action space, which
corresponds to learning a left-inverse function. Empirical results
show that a right-inverse function can be learned by minimizing
EQ [5,2,11]. Why this is possible is not theoretically understood for
the general case. In fact, this kind of learning largely depends on
how the data set is chosen by exploration, whether f is linear or
not, and whether the system contains redundancy: For the
redundant case nom, left-inverse functions do not exist on
general data sets because different ql can have the same outcome
xl. Trying to fit such inconsistent examples results in averaging.
In non-linear domains such sets can be non-convex, so that
averaging leads to invalid solutions [1]. Sanger [6] investigated
the use of goal-directed exploration in the non-linear case without
redundancy and showed that learning is not guaranteed to work.

This paper complements these previous, negative outcomes
and investigates the role of redundancy. In order to disentangle
the effects of redundancy, and effects of non-convex solution sets,
we examine redundancy in linear domains. These domains have
convex solution sets (linear subspaces) which allow us to study
redundancy in isolation. Further, the linear case paves the way
towards a localized understanding of non-linear problem domains.
As a first positive result, we show that performance- and action-
gradient have a non-negative relation in Section 2.3 and provide
general fixpoint conditions. Using this framework, we re-
investigate the setup of Sanger for the linear redundant case and
show additional failure modes. An important outcome of this
paper is that, if exploratory noise is added, learning will always
converge to a valid solution, which is even optimal with respect to
least-squares parameter values.

2.3. Non-negative relation in linear domains

In the linear domain, the relation between actions qAQDRm

and outcomes xAX¼ f ðQ ÞDRn is given by the linear forward
function:

Definition 1 (Linear forward function). We define the forward
function as f ðqÞ ¼M � q where M is a real-valued matrix MARn�m

with nrm and rankðMÞ ¼ n.

Requiring M to have full rank implies surjectivity of f and thus
solvability of the right-inverse problem. In correspondence to a

Fig. 1. Relation between action and observation space: a forward function f maps
actions into a lower-dimensional outcome. An inverse g must suggest an action for
a given target.
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