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a b s t r a c t

Against the background of classification in data mining tasks typically various aspects of accuracy, and
often also of model size are considered so far. The aspect of interpretability is just beginning to gain
general attention. This paper evaluates all three of these aspects within the context of several
computational intelligence based paradigms for high-dimensional spectral classification of data acquired
by hyperspectral imaging and Raman spectroscopy. It is focused on state-of-the-art paradigms of a
number of different concepts, such as prototype based, kernel based, and support vector based
approaches. Since the application point of view is emphasized, three real-world datasets are the basis
of the presented study.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral imaging as recent extension to traditional non-
invasive spectroscopic analysis techniques (e.g. NIR spectroscopy)
has paved the way to obtain the biochemical constitution of
inspected solid materials with the additional advantage of a
two-dimensional spatial resolution [1,2]. For the examination of
liquid samples, Raman spectroscopy has been shown to be a viable
tool to gather information without extensive sample preparation
[3].

Often the direct relationship between spectral information and
biochemical target values or material category is not known in a
closed mathematical form. In this case a machine learning
approach is used to acquire an analysis model from reference
data, a paradigm often referred to as ‘soft-sensor’. Sensor data
analysis becomes a pattern recognition task. Regarding pattern
recognition and data mining in the acquired spectral data, com-
putational intelligence based methods are still providing powerful
tools to cope with this kind of high-dimensional and complex data
(see Fig. 1).

From the computational intelligence point of view the recent
developments in hyperspectral camera technology with increas-
ingly high resolution in both the spectral and spatial domain have
led to high-dimensional input spaces and a large number of
training vectors. Both aspects even more motivate and demand
computational intelligence based algorithms.

Besides unsupervised visualization and clustering typically
used to get a (first) graphical representation of the acquired
spectral data, classification and multivariate regression is often
required by the underlying application. Here, corresponding
labeled data is necessary. Since suitable wet lab analyses to
provide continuously valued reference data are typically expen-
sive, frequently categorical labels are provided. This leads to a
classification task. Industrial applications in product quality
control and sorting also demand on-line classification at a low
systems cost.

Therefore this classification task has in general three, some-
times conflicting, objectives to address. The first objective is a
classification model of high accuracy. The second objective is an as
small as possible classification model for quick calculation. A third
objective is the restriction to necessary information/features of the
examined objects for the classification task at hand. In spectral
data processing this means the restriction to necessary spectral
bands. This not only speeds up calculation but also leads to less
expensive spectral sensor systems. Therefore classification models
need to offer a certain degree of interpretability. Relevance profiles
for example can indicate the importance of the used input
variables, in this case the acquired spectral bands. Additionally,
classification models should require small or no expert interfer-
ence in order to tune model parameters which could lead to
biased, non-optimal decisions by the user.

Keeping these requirements in mind, a number of computa-
tional intelligence paradigms appear to be particularly suitable.
Among them are prototype-based neural networks, such as the
Generalized Learning Vector Quantization (GLVQ) family [4],
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Supervised Neural Gas [5], and RBF (Radial Basis Function) net-
works [6] as well as Multilayer Perceptron (MLP) networks [7,8]
and Support Vector Machines (SVM) [9]. These five approaches
span the scope of the presented paper. The qualification of these
different approaches regarding classification data from the hyper-
spectral imaging domain as well from Raman spectra data in terms
of several theoretical considerations as well as practical aspects is
evaluated. In order to derive practically relevant information from
this study, several real-world datasets are used.

2. Material and methods

2.1. Green coffee spectra

Quality control of coffee products, from basic green coffee to
the finished roasted coffee, by hyperspectral imaging offers the
means for a non-invasive, on-line and automated screening
method to control large product quantities [10,11]. For example
green coffee has to be inspected for the Robusta or Arabica
varieties since Arabica based coffee is sold at a different price
than Robusta based coffee. The spatial resolution of hyperspectral
imaging makes it the ideal tool for loose material sorting especially
in the case where information from color, shape, or texture is not
sufficient for differentiation.

For the hyperspectral image acquisition coffee beans of four
different green coffee varieties, two varieties of Arabica and two
varieties of Robusta and a standard optical PTFE (polytetrafluor-
oethylene) calibration pad were positioned on a translation table,
one class at a time. Hyperspectral images were recorded using a
HySpex SWIR-320m-e line camera (Norsk Elektro Optikk A/S).
Spectra are from the short-wave infra-red range (SWIR) between
970 nm and 2500 nm at 6 nm resolution yielding a 256-
dimensional spectral vector per pixel. The camera line has a
spatial resolution of 320 px and can be recorded with a maximum
frame rate of 100 fps. Radiometric calibration was performed using
the vendors software package. Spectra are normalized to a vector
length of one.

Coffee beans were segmented from background via Neural Gas
(NG) clustering [12]. We used five prototype vectors, each repre-
senting a cluster with a receptive field determined by the smallest
Euclidean distance from data sample v to the prototypes. The
prototype spectra w are randomly initialized and updated by
minimizing the following energy function [13]:

EðV;WÞ ¼ 1
Cðγ;KcÞ

∑
vAV

∑
wAW

hγðr; v;WÞdðv;wÞ; ð1Þ

with d being the Euclidean distance and where

hγðr; v;WcÞ ¼ exp �krðv;WcÞ
γ

� �
ð2Þ

denotes the degree of neighborhood cooperation. The function
krðv;WÞ gives the number of prototypes that have equal or smaller
distance to the input spectra than prototype wr , and Cðγ;Kcv Þ is a
normalization constant depending on the neighborhood range γ
and cardinality K of W. Minimization was achieved with the freely
available Matlab ‘minFunc’ optimization toolbox1 using the non-
linear conjugate gradient approach with automatic step size. The
cluster representing coffee was chosen through manual inspection
and all spectra in this cluster formed the respective coffee class.
Fig. 2 depicts the clustering/segmentation process.

The dataset contains the four green coffee varieties forming a
4-class problemwith 2000 spectra per class. Fig. 3A shows average
spectra for the four green coffee classes.

2.2. Scotch whisky spectra

The automated, on-line assessment of high-priced liquor pro-
ducts is essential for the standardization and quality monitoring in
liquor production as well as potential fraud detection. An ideal
sensor should be compact for mobile applications and requires no
special sample preparation while measuring sample quality
instantaneously. In [3] an optofluidic chip was presented that uses
Raman spectroscopy to acquire a Raman spectrum of the fluid
sample.

The procedure to acquire the Raman spectra from Whisky
samples is shown in detail in [3]. In Raman spectroscopy a sample
is illuminated with a laser beam. The laser light interacts with
molecular vibrations, phonons or other excitations in the system,
resulting in the energy of the laser photons being shifted up or
down. The shift in energy gives information about the vibrational
modes in the system. Raman spectroscopy is commonly used in
chemistry, since vibrational information is specific to the chemical
bonds and symmetry of molecules. Therefore, it provides a
fingerprint by which molecules can be identified.

Whisky samples of 20 μl were directly loaded into the micro-
fluidic chip without any preparation. After Raman acquisition, any
remaining liquid at the sample inlet was wiped off and 40 μl of
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Fig. 1. Example of hyperspectral imaging cube: (A) Reflectance properties of
objects can be recorded with spatial resolution; (B) each spatial pixel contains a
spectral signature that contains information about the chemical composition of the
observed material.

1 http://www.di.ens.fr/�mschmidt/Software/minFunc.html
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