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a b s t r a c t

In this paper, the H1 synchronization control problem is investigated for a class of dynamical networks
with randomly varying nonlinearities. The time varying nonlinearities of each node are modelled to be
randomly switched between two different nonlinear functions by utilizing a Bernoulli distributed
variable sequence specified by a randomly varying conditional probability distribution. A probability-
dependent gain scheduling method is adopted to handle the time varying characteristic of the switching
probability. Attention is focused on the design of a sequence of gain-scheduled controllers such that the
controlled networks are exponentially mean-square stable and the H1 synchronization performance is
achieved in the simultaneous presence of randomly varying nonlinearities and external energy bounded
disturbances. Except for constant gains, the desired controllers are also composed of time varying
parameters, i.e., the time varying switching probability and therefore less conservatism will be resulted
comparing with traditional controllers. In virtue of semi-definite programming method, controller
parameters are derived in terms of the solutions to a series of linear matrix inequalities (LMIs) that can
be easily solved by the Matlab toolboxes. Finally, a simulation example is exploited to illustrate the
effectiveness of the proposed control strategy.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Complex networks are consisted of mass numbers of highly
interrelated nodes and can be used to model various of practical
systems in the real world. In many practical situations, it is very
common that a large number of complicated systems have been
simplified by complex networks for theoretical analysis such as
neural systems, social networks, food webs, power grids and so on.
From the end of last century, complex networks have received
particularly research attention and an increasing interest since the
two fundamental academic papers have been published with the
discoveries of the “small-world” and “scale-free” properties [2,27].
Furthermore, very recently, due to the arrival of the age of big data,
complex networks are becoming a hot research area in the simulta-
neous presence of opportunities and challenges and, how to handle
the large scale of network data trends to be a crucial technical
problem to be solved. On the other hand, synchronization as a

complex and interesting phenomenon in the dynamical networks
has attracted continual research attentions in the past few years not
only because of it being a universal behavior in the natural world and
commonly existing in many system models such as, the large-scale
and complex networks of chaotic oscillators [13,15–17,19], the
coupled systems exhibiting spatiotemporal chaos and autowaves
[23,32], and the array of coupled neural networks [8,31], but also
owing to its bright prospects in the practical applications in a wide
range of fields including parallel image processing [10], pattern
storage and retrieval [14], and secure communications.

It is well known that nonlinearities are ubiquitous and inevi-
table in almost all practical engineering applications and are of
probable source for performance degradation, which has posed a
great challenge for system design, and many research efforts have
been devoted to this main stream topic in the control community
during the past several decades, see e.g. [4–7,11,12,24,25]. Due
mainly to its own complexity, the dynamical networks easily trend
to be subject to a large class of nonlinearities which can be
resulted from the additive nonlinear exogenous disturbances
caused by environmental circumstances. On the other hand, in
the complex dynamical networks, it hardly obtains an explicit
description of the nonlinear disturbances in the form of either
intensity or types, namely the nonlinear disturbances themselves
may suffer from random abrupt changes owing primarily to some
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abrupt phenomena, such as random failures and repairs of the
components, intermittently switching in the interconnections of
nodes, sudden environment changes, and modification of the
operating point of a linearized model of a nonlinear systems
[25]. Hence, such nonlinear disturbances vary in a random way
in terms of intensity or types with a determined or uncertain
probability distribution, which gives rise to the so-called randomly
varying nonlinearities (RVNs). Since the RVNs can reflect the
nonlinear disturbances existing in many practical physical pro-
cesses more properly and accurately, some initial attentions have
been focused on it, see e.g. [4,18].

Because of the unpredictable disturbances or the inherent
structure of components, there exists a nonzero probability for
system parameters to deviate the normal value, and such system is
named as time varying system. Rather than time invariant system,
the time varying system is another class of important system and
more suitable for approximating the practical situations. However,
with the parameter perturbation entering into the original system,
the difficulties for controller/filter design have been potentially
increased, hence, it is very urgent to develop a proper method to
overcome this challenge. Fortunately, the gain-scheduling
approach has been seen as an effective way for the time varying
system, whose main idea is to associate with the scheduling
parameters when design controller/filter gains. Owing to its
scheduling nature according to the time varying parameters, the
gain-scheduling method has indeed reduced the possible conser-
vatism compared with the traditional ones. Parallel to the gain-
scheduling technique, parameter-dependent Lyapunov function
method is another useful tool to cope with the uncertain system
parameters in order to get a desired performance as well as reduce
the redundant design introduced by the time-varying parameters
and, lots of research results have been appeared in the literature,
see e.g. [1,3,26]. Very recently, some reported results have been
concerned with the combination of the two advanced techniques
rationally for achieving better performance requirements, see e.g.
[28,29]. However, up to now, to the best of authors0 knowledge,
the synchronization control problem has not been focused on for
complex dynamical networks with time-varying nonlinearities via
a probability dependent gain-scheduled approach due mainly to
the mathematical complexity, which gives us the motivation for
further investigation.

Summing up the above discussions, in this paper, we aim to
deal with the problem of synchronization control of complex
dynamical networks which are subject to randomly varying non-
linearities via a probability dependent gain scheduling approach. A
Bernoulli distributed sequence is introduced to account for the
stochastic phenomenon of time varying nonlinearities with a
dynamical probability that is measurable in real time. The main
contribution of this paper is highlighted as follows: (1) it is
proposed that a new dynamical networks model covers the
randomly varying nonlinearities whose occurrence probability is
described by a series of varying Bernoulli distributions yet taking
value on a certain interval, which is more close to the practical
engineering; (2) the potential conservatism will be reduced
resulting from time varying probability distributions via introdu-
cing the parameter dependent Lyapunov function and slack vari-
able; (3) an array of dynamical controller gains for complex
networks has been developed, which are scheduled with the
changeable probability distributions.

The remainder of this technique note is organized as follows: In
Section 2, a stochastic dynamical networks model is formulated in
the presence of randomly varying nonlinearities and exogenous
bounded disturbances. In Section 3, a sufficient condition is
provided to guarantee the exponentially stable of dynamical net-
works and, further more, the controller gain of each node is
derived in terms of the solutions to a sequence of linear matrix

inequalities (LMIs). An illustrated numerical simulation is given to
show the effectiveness and applicability of our proposed algorithm
in Section 4 and a conclusion is summarized in Section 5.

Notation: The notations are quite standard. Throughout this
paper, Zþ , Rn and Rn�m denote, respectively, the positive integer
space, the n-dimensional Euclidean space and the set of all n�m
real matrices. The superscript “T” denotes matrix transposition and
the notation XZY (respectively, X4Y) where X and Y are
symmetric matrices, means that X�Y is positive semi-definite
(respectively, positive definite). For vector z, zZ0 means that each
entry of z is nonnegative. I is the identity matrix. Efxg stands for
the expectation of stochastic variable x, and JxJ describes the
Euclidean norm of a vector x. If A is a matrix, denote by λmaxðAÞ
(respectively, λminðAÞ) the largest (respectively, smallest) eigenva-
lue of A. Matrices, if not explicitly specified, are assumed to have
compatible dimensions.

2. Problem formulation

Consider the dynamical networks with N coupled nodes as the
following form:

xiðkþ1Þ ¼ AxiðkÞþαðkÞf ðxiðkÞ; kÞþð1�αðkÞÞgðxiðkÞ; kÞ

þ ∑
N

j ¼ 1
wijΓxjðkÞþuiðkÞþBivðkÞ;

ziðkÞ ¼MxiðkÞ;

8>>>><
>>>>:

ð1Þ

where xiðkÞARn, uiðkÞARn and ziðkÞARm are the state vector,
control input and controlled output of the ith node, respectively.
vðkÞARp is the disturbance input belonging to l2[0,þ1Þ. f ð�Þ and
gð�Þ are nonlinear vector functions. Γ ¼ diagðγ1; γ2;…; γnÞ is the
inner coupling matrix between two connected nodes for all
1r i; jrN. W ¼ ðwijÞN�N is the coupled configuration matrix
representing the coupling structure of the dynamical networks.
If there is a connection between node i and node j ðia jÞ, wij40,
otherwise, wij ¼ 0. In this paper, as usual, we assume W to be
symmetric matrix and satisfy the condition ∑N

j ¼ 1; ia jwij ¼ �wii

ði¼ 1;2;…;NÞ. A, Bi and M are constant matrices with appropriate
dimensions.

The vector-value functions f ð�Þ and gð�Þ: Rn-Rn represent two
different nonlinear disturbances which are assumed to be contin-
uous and satisfy the following conditions:

‖f ðxðkÞÞ‖2rδ‖G1xðkÞ‖2; ð2Þ

‖gðxðkÞÞ‖2rβ‖G2xðkÞ‖2; ð3Þ
where δ, β are known positive scalars, and G1, G2 are known
constant real matrices of appropriate dimensions.

In this paper, we are interested to steer the dynamical network
systems to a desired state s(k), which is described as the solution
to the following specified reference model:

sðkþ1Þ ¼ AsðkÞ;
zðkÞ ¼MsðkÞ;

(
ð4Þ

where z(k) is the output of the target state. Denoting eiðkÞ ¼
xiðkÞ�sðkÞ, ~ziðkÞ ¼ ziðkÞ�zðkÞ, respectively, the following systems
that govern the synchronization error dynamics can be obtained:

eiðkþ1Þ ¼ AeiðkÞþαðkÞf ðeiðkÞþsðkÞ; kÞ
þð1�αðkÞÞgðeiðkÞþsðkÞ; kÞ

þ ∑
N

j ¼ 1
wijΓejðkÞþuiðkÞþBivðkÞ;

~ziðkÞ ¼MeiðkÞ;

8>>>>>><
>>>>>>:

ð5Þ

for all i¼ 1;2;…N. Stochastic variable αðkÞ in (1) is a Bernoulli-
distributed sequence that accounts for the randomly varying
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