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a b s t r a c t

Prototype-based methods often display very intuitive classification and learning rules. However, popular
prototype based classifiers such as learning vector quantization (LVQ) are restricted to vectorial data only.
In this contribution, we discuss techniques how to extend LVQ algorithms to more general data
characterized by pairwise similarities or dissimilarities only. We propose a general framework how the
methods can be combined based on the background of a pseudo-Euclidean embedding of the data. This
covers the existing approaches kernel generalized relevance LVQ and relational generalized relevance
LVQ, and it opens the way towards two novel approach, kernel robust soft LVQ and relational robust soft
LVQ. Interestingly, also unsupervised prototype based techniques which are based on a cost function
can be put into this framework including kernel and relational neural gas and kernel and relational
self-organizing maps (based on Heskes' cost function). We demonstrate the performance of the LVQ
techniques for similarity or dissimilarity data in several benchmarks, reaching state of the art results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since electronic data sets increase rapidly with respect to size
and complexity, humans have to rely on automated methods to
access relevant information from such data. Apart from classical
statistical tools, machine learning has become a major technique in
the context of data processing since it offers a wide variety of
inference methods. Today, a major part of applications is concerned
with the inference of a function or classification prescription based
on a given set of examples, accompanied by data mining tasks in
unsupervised machine learning scenarios and more general settings
as tackled, e.g. in the frame of autonomous learning. In this contri-
bution, we focus on classification problems.

There exist many different classification techniques in the
context of machine learning ranging from symbolic methods such
as decision trees to statistical methods such as Bayes classifiers.
Because of its often excellent classification and generalization perfor-
mance, the support vector machine (SVM) constitutes one of the
current flagships in this context, having its roots in learning
theoretical principles as introduced by Vapnik and colleagues [4].
Due to its inherent regularization of the result, it is particularly suited
if high dimensional data are dealt with. Further, the interface to the
data is given by a kernel matrix such that, rather than relying on
vectorial representations, the availability of the Gram matrix is
sufficient to apply this technique.

With machine learning techniques becoming more and more
popular in diverse application domains and the tasks becoming
more and more complex, there is an increasing need for models
which can easily be interpreted by practitioners: for complex
tasks, often, practitioners do not only apply a machine learning
technique but also inspect and interpret the result such that a
specification of the tackled problem or an improvement of the
model becomes possible [39]. In this setting, a severe drawback
of many state-of-the-art machine learning tools such as the SVM
occurs: they act as black-boxes. In consequence, practitioners
cannot easily inspect the results and it is hardly possible to change
the functionality or assumptions of the model based on the result
of the classifier.

Prototype-based methods enjoy a wide popularity in various
application domains due to their very intuitive and simple behavior:
they represent their decisions in terms of typical representatives
contained in the input space and a classification is based on the
distance of data as compared to these prototypes [19]. Thus, models
can be directly inspected by experts since prototypes can be treated
in the same way as data. Popular techniques in this context include
standard learning vector quantization (LVQ) schemes and extensions
to more powerful settings such as variants based on cost functions
or metric learners such as robust soft LVQ (RSLVQ) or generalized
LVQ (GLVQ), for example [32,37,38,36]. These approaches are based
on the notion of margin optimization similar to SVM in case of GLVQ
[37], or based on a likelihood ratio maximization in case of RSLVQ
[38]. For GLVQ and RSLVQ, a behavior which closely resembles
standard LVQ2.1 results in limit cases. The limit case of RSLVQ
does not necessarily achieve optimum behavior already in simple
model situations similar to LVQ2.1, as has been investigated in the
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context of the theory of online learning [2]. Nevertheless, it displays
excellent generalization ability in the standard intermediate case,
see e.g. [36] for an extensive comparison of the techniques.

With data sets becoming more and more complex, input
data are often no longer given as simple Euclidean vectors, rather
structured data or dedicated formats can be observed such as
sequences, graphs, tree structures, time series data, functional data,
and relational data as occurs in bioinformatics, linguistics, or diverse
heterogeneous databases. Several techniques extend statistical
machine learning tools towards non-vectorial data: kernel methods
such as SVM using structure kernels, recursive and graph networks,
functional methods, relational approaches, and similar [9,33,11,31,14].

Recently, popular prototype-based algorithms have also been
extended to deal with more general data. Several techniques rely
on a characterization of the data by means of a matrix of pairwise
similarities or dissimilarities only rather than explicit feature
vectors. In this setting, median clustering as provided by median
self-organizing maps, median neural gas, or affinity propagation
characterizes clusters in terms of typical exemplars [10,20,8]. More
general smooth adaptation is offered by relational extensions such
as relational neural gas or relational learning vector quantization
[13]. A further possibility is offered by kernelization such as
proposed for neural gas, self-organizing maps, or different variants
of learning vector quantization [29,5,30]. By formalizing the inter-
face to the data as a general similarity or dissimilarity matrix,
complex structures can be easily dealt with: structure kernels for
graphs, trees, alignment distances, string distances, etc. open the
way towards these general data structures [27,11].

In this contribution, we consider the question how to extend cost
function based LVQ variants such as RSLVQ (11) or GLVQ (2) to
similarity or dissimilarity data, respectively. We propose a general
way based on an implicit pseudo-Euclidean embedding of the data,
and we discuss in how far instantiations of this framework differ
from each other. Using this framework, we cover existing techniques
such as kernel GLVQ [30] and relational GLVQ [15], and investigate
novel possibilities such as kernel and relational RSLVQ. These
techniques offer valid classifiers and training methods for an arbi-
trary symmetric similarity or dissimilarity. Some mathematical
properties, however, such as an interpretation via a likelihood ratio
or interpretation of learning as exact gradient, are only guaranteed in
the Euclidean case for some of the possible choices, as wewill discuss
in this paper. In this context, we investigate the effect of corrections
of the matrix to make data Euclidean. The effectivity of the novel
techniques is demonstrated in a couple of benchmarks.

Now, we first introduce standard LVQ for Euclidean vectors, in
particular the two cost-function based variants GLVQ and RSLVQ.
Afterwards, we review facts about similarity and dissimilarity data
and their pseudo-Euclidean embedding. Based on this embedd-
ing, kernel and relational variants of LVQ can be introduced for
similarities or dissimilarities. Training can take place essentially in
two ways, mimicking the corresponding Euclidean counterparts or
via direct gradients, whereby the same local optima of the cost
function are present in the Euclidean case, but a numerical scaling
of the gradients is observed. We exemplarily derive new models,
kernel RSLVQ and relational RSLVQ in this framework. Experi-
ments are based on the setting as proposed in [6], investigating
the effect of different preprocessing steps and learning techniques
in comparison to the results of SVM and a k-nearest neighbor
classifier. We conclude with a discussion.

2. Learning vector quantization

Learning vector quantization (LVQ) constitutes a very popular
class of intuitive prototype based learning algorithms with success-
ful applications ranging from telecommunications to robotics [19].

Basic algorithms as proposed by Kohonen include LVQ1 which
is directly based on Hebbian learning, and improvements such as
LVQ2.1, LVQ3, or OLVQ which aim at a higher convergence speed or
better approximation of the Bayesian borders. These types of LVQ
schemes have in common that their learning rule is essentially
heuristically motivated and a valid cost function does not exist [3].
One of the first attempts to derive LVQ from a cost function can be
found in [32] with an exact computation of the validity at class
boundaries in [36]. Later, a very elegant LVQ scheme which is based
on a probabilistic model and which can be seen as a more robust
probabilistic extension of LVQ2.1 has been proposed in [38]. We
shortly review these two proposals.

2.1. Generalized learning vector quantization

Assume data ξiARn with i¼1,…,N are labeled yi where labels
stem from a finite number of different classes. A GLVQ network is
characterized by m prototypes wjARn with priorly fixed labels
cðwjÞ. Classification takes place by a winner takes all scheme:

ξ↦cðwjÞ where dðξ;wjÞ is minimum ð1Þ

with squared Euclidean distance dðξ;wjÞ ¼ Jξ�wj J2, breaking ties
arbitrarily.

For training, it is usually assumed that the number and classes
of prototypes are fixed. In practice, these are often determined
using cross-validation, or a further wrapper technique is added to
obtain model flexibility. Training aims at finding positions of the
prototypes such that the classification accuracy of the training
set is optimized. GLVQ also takes the generalization ability into
account, using the costs

∑
i

dðξi;wþ Þ�dðξi;w� Þ
dðξi;wþ Þþdðξi;w� Þ ð2Þ

where wþ constitutes the closest prototype with the same label as
ξi and w� constitutes the closest prototype with a different label
than ξi. The nominator is negative iff ξi is classified correctly, thus
GLVQ tries to maximize the number of correct classifications.
In addition, it aims at an optimization of the hypothesis margin
dðξi;w� Þ�dðξi;wþ Þwhich determines the generalization ability of
the method [37].

Training takes place by a simple stochastic gradient descent, i.e.
given a data point ξi, adaptation takes place via

Δwþ � � 2 � dðξi;w� Þ
ðdðξi;wþ Þþdðξi;w� ÞÞ2

� ∂dðξi;w
þ Þ

∂wþ ð3Þ

Δw� � 2 � dðξi;wþ Þ
ðdðξi;wþ Þþdðξi;w� ÞÞ2

� ∂dðξi;w
� Þ

∂w� ð4Þ

From an abstract point of view, we can characterize GLVQ as a
classifier, which classification rule is based on a number of
quantities

Dðξ;wÞ≔ðdðξi;wjÞÞi ¼ 1;…;N;j ¼ 1;…;m ð5Þ

Training aims at an optimization of a cost function of the form

f ðDðξ;wÞÞ ð6Þ

by means of the gradients

∂f ðDðξ;wÞÞ
∂wj

¼ ∑
m

i ¼ 1

∂f ðDðξ;wÞÞ
∂dðξi;wjÞ

� ∂dðξi;wjÞ
∂wj

ð7Þ

with respect to the prototypes wj or the corresponding stochastic
gradients for one point ξi.
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