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a b s t r a c t

This paper investigates the distributed containment control problem for linear multi-agent systems.
Distributed dynamic output feedback controllers on the basis of the relative outputs of neighboring
agents are proposed. Necessary and sufficient containment control conditions are presented which are
less conservative than those in the literature. These conditions depend on the spectral properties of the
topology matrix. Effective algorithms are proposed to obtain control gain matrices based on H1 type
Riccati design. Then, distributed static output feedback control method is also discussed. Simulation
examples are provided finally to demonstrate the effectiveness of the proposed design methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, cooperative control in networks of autonomous
mobile agents is extensively studied due to its extensive applica-
tions in biological systems, mobile robots, sensor networks, space-
craft formation flying, and other areas. As one of the most
fundamental research topics in the field of cooperative control of
multi-agent systems, consensus plays an important role in achiev-
ing collective behavior through local interactions of agents and has
attracted considerable attention. Consensus means that the states
of all agents reach an agreement on a common value via local
information exchange. Following many pioneering works [1–4],
various consensus problems of multi-agent systems were studied,
such as consensus of systems with second-order dynamics [5–8]
and high-order dynamics [9–12], consensus of agents with time-
delay [13,14], agreement over random networks [15–17], and
consensus with H1 control [18,19], just to mention a few.

Compared to the leaderless consensus problem, a particularly
interesting topic is the consensus of a group of agents with a single
leader or multiple leaders, where the motion of the leaders is
independent of the other following agents. In the single-leader
case, the followers are to be driven to approach the leader. Such a
problem is named the leader-following consensus problem, and
can also be called the cooperative tracking control problem. Many
significant results on leader-following consensus have been
reported, see, for instance, [20–23] and the references therein.

When the multiple leaders are taken into account, the followers
will move in the minimum geometric space spanned by the
leaders by utilizing appropriate control protocols, that is called
the containment control problem. The containment control pro-
blem has many practical applications. For instance, a group of
robots move to a target when only a few robots can detect the
hazardous obstacle. These robots can be designed as leaders,
whereas the others can be designed as followers. The followers
must stay in the moving safe area formed by the leaders to reach
the target safely [26]. In [24], a hybrid control scheme was
proposed and the partial differential equation theory was utilized.
In [25], a stop-and-go strategy was provided for a group of single-
integrator agents under a fixed undirected network topology.
Distributed containment control with stationary or dynamic
leaders under directed networks was studied in [26] and [27],
where single-integrator dynamics and double-integrator dynamics
were, respectively, focused on. In [28], finite-time containment
control algorithms for autonomous agents with double-integrator
dynamics were proposed by using only position measurements.
When the multiple Lagrangian systems and multiple rigid bodies
were considered, the containment control results can be found in
[29] and [30], respectively.

Note that in some applications, the dynamics of the agents are
complicated, and cannot be modeled by single- or double-
integrator dynamics. Very recently, the containment control pro-
blem for multi-agent systems with general linear dynamics was
discussed in [31] and [32]. By classifying the agents into internal
agents and boundary agents, the continuous-time case was stu-
died in [31]. Both the continuous-time and discrete-time cases
were considered in [32]. However, the proposed containment
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condition in [32] was only sufficient. Furthermore, there is no
results on containment control using distributed static output
feedback controllers, which are simpler than dynamic output
feedback controller.

In the current paper, distributed containment control for linear
multi-agent systems based on the relative outputs of neighboring
agents is studied. The contributions of the paper are as follows.
First, distributed dynamic output feedback controllers with dis-
tributed observers are proposed. Second, by using spectral analysis
and matrix theory, necessary and sufficient containment condi-
tions are presented which are more refined than those in the
literature. Third, distributed static output feedback controllers are
designed, where the observer is not needed.

Notations. Throughout this paper, for real symmetric matrices X
and Y, the notation XZY (respectively, X4Y) means that the
matrix X�Y is positive semi-definite (respectively, positive defi-
nite). I denotes an identity matrix of appropriate dimension.
1NARN be the vector with all entries being 1. 0M�NARM�N be
the matrix with all entries being 0. The notation ‘n’ is used as an
ellipsis for terms that are induced by symmetry. The Kronecker
product of matrices X and Y is denoted as X � Y . X�1 denotes the
inverse matrix of matrix X. ΛðXÞ denotes the set of the eigenvalues
of X and Λþ ðXÞ the set of the eigenvalues with positive real part of
X. RðλÞ denotes the real part of a complex number λ. The convex
hull of a finite set of points x1; x2;…; xnARm is the minimal convex
set containing all points xi; i¼ 1;2;…;n, denote by cofx1; x2;…;

xng ¼ f∑n
i ¼ 1αixijαAR;αZ0;∑n

i ¼ 1αi ¼ 1g.

2. Preliminaries

In this section, some basic concepts and definitions about graph
theory and model formulation are briefly introduced.

Let G¼ fV; Eg be a directed graph with the set of nodes
V ¼ f1;2;…;Ng, the set of directed edges EDV � V. A directed
edge eij in network G is denoted by the ordered pair of nodes (i, j),
meaning that node j can receive information from node i. The set
of neighbors of node i is denoted by N i ¼ fjAV : ðj; iÞAE; ja ig. The
elements of the adjacency matrix D are defined as dij ¼ 1 if and
only if there is a directed edge (j, i) in G; otherwise, dij ¼ 0. The
Laplacian matrix L¼ ðlijÞN�N is defined as lii ¼∑N

j ¼ 1;ja idij, and
lij ¼ �dij; ia j.

A directed path is a sequence of nodes 1;2;…; r such that
ði; iþ1ÞAE, iAf1;2;…; r�1g. A directed graph is strongly con-
nected if there is a directed path for any two distinct nodes j
and i. A directed graph has a directed spanning tree if there exists
at least one node called root node which has a directed path to all
the other nodes.

Consider a group of N identical agents with general linear
dynamics:

_xiðtÞ ¼ AxiðtÞþBuiðtÞ;
yiðtÞ ¼ CxiðtÞ; i¼ 1;2;…;N; ð1Þ
where xiðtÞARn, uiðtÞARp and yiðtÞARq are the state, the control
input and the measured output of agent i, respectively.

An agent is called a leader if the agent has no neighbor,
whereas an agent is called a follower if the agent has at least
one neighbor. Without loss of generality, assume that the agents
indexed by 1;2;…;M ðMoNÞ are leaders, whereas the rest agents
indexed by Mþ1;Mþ2;…;N are followers. Denote by
iAL¼ f1;2;…;Mg the leader, and iAF ¼ fMþ1;Mþ2;…;Ng the
follower.

Note that the leaders have no neighbors, L becomes

L¼
0M 0M�ðN�MÞ
L1 L2

" #

¼
0 0 ⋯ 0 0
L11 L12 ⋯ L1M L2

" #
: ð2Þ

Assumption 1. For each follower, there exists at least one leader that
has a directed path to that follower.

Lemma 1 (Meng et al. [30]). Under Assumption 1, all the eigenva-
lues of L2 have positive real parts, each entry of �L�1

2 L1 is
nonnegative, and each row of �L�1

2 L1 has a sum equal to 1.

Definition 1. The containment control is achieved for the agents
in (1) if the states of the followers asymptotically converge to the
convex hull formed by the leaders.

3. Cooperative dynamic output feedback controller design

In this section, a cooperative dynamic regulator is proposed
that uses only the neighbors’ output measurements of each agent.
A necessary and sufficient condition for containment control
is given.

Consider system (1). Denote x̂iðtÞARN as the estimate of the
state xi(t), ŷiðtÞ ¼ Cx̂iðtÞ as the estimate of output yi(t). Let
~xiðtÞ ¼ xiðtÞ� x̂iðtÞ and ~yiðtÞ ¼ yiðtÞ� ŷiðtÞ as the state estimation
error and output estimation error for agent i, respectively.

Propose the following containment control protocol:

uiðtÞ ¼ K ∑
jAN i

dijðx̂iðtÞ� x̂jðtÞÞ;

_̂x iðtÞ ¼ Ax̂iðtÞþBuiðtÞþF ∑
jAN i

dij½Cðx̂iðtÞ� x̂jðtÞÞ�; ð3Þ

where feedback gain K and observer gain F are to be designed. It is
evident that the protocol (3) is distributed, and uiðtÞ ¼ 0; iAL.

Then, we have

_xiðtÞ ¼ AxiðtÞþBK ∑
jAN i

dijðxiðtÞ�xjðtÞÞ�BK ∑
jAN i

dijð ~xiðtÞ� ~xjðtÞÞ;

_~x iðtÞ ¼ A ~xiþF ∑
jAN i

dij½Cð ~xiðtÞ� ~xjðtÞÞ�: ð4Þ

Denote

X i ¼ ½xTi ; ~xTi �T ;
X ¼ ½XT

1;…;XT
M ;…XT

N �T ¼ ½XT
l ;XT

f �T ;
~x ¼ ½ ~xT1;…; ~xTM ;… ~xTN�T ¼ ½ ~xTl ; ~xTf �T :

One has

_X ðtÞ ¼ ðIN � RþL � SÞX ðtÞ; ð5Þ
where

R¼ A 0
0 A

� �
; S¼ BK �BK

0 FC

� �
:

The next result gives a necessary and sufficient condition for
the containment control of system (1) with protocol (3).

Theorem 1. Suppose that (A, B) is stabilizable, (A, C) is detectable,
and Assumption 1 holds. Then, containment control of system (1) can
be achieved under protocol (3) if and only if all matrices AþλBK,
AþλFC, λAΛþ ðLÞ are Hurwitz. In particular, xf ðtÞ-�
L�1
2 L1 � eAtxlð0Þ, ~xf ðtÞ-�L�1

2 L1 � eAt ~xlð0Þ as t-1.

Proof (Sufficiency). From the property of L and Assumption 1, we
know that the algebraic multiplicity of eigenvalue 0 of L is M. It can
be verified that the geometric multiplicity of eigenvalue 0 of L is M.
Therefore, L can be expressed as the following form:

L¼ PJP�1
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