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a b s t r a c t

Graph-based Semi-Supervised Learning (SSL) methods are the widely used SSL methods due to their high
accuracy. They can well meet the manifold assumption with high computational cost, but don't meet the
cluster assumption. In this paper, we propose a Semi-supervised learning via SPArse (SSPA) model. Since
SSPA uses sparse matrix multiplication to depict the adjacency relations among samples, SSPA can
approximate low dimensional manifold structure of samples with lower computational complexity than
these graph-based SSL methods. Each column of this sparse matrix corresponds to one sparse
representation of a sample. The rational is that the inner product of sparse representations can also be
sparse under certain constraint. Since the dictionary in the SSPA model can depict the distribution of the
entire samples, the sparse representation of a sample encodes its spatial location information. Therefore,
in the SSPA model the manifold structure of samples is computed via their locations in the intrinsic
geometry of the distribution instead of their feature vectors. In order to meet the cluster assumption, we
propose an structured dictionary learning algorithm to explicitly reveal the cluster structure of the
dictionary. We develop the SSPA algorithms with the structured dictionary besides non-structured one,
and experiments show that our methods are efficient and outperform state-of-the-art graph-based SSL
methods.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Semi-supervised learning (SSL) uses a large number of unla-
beled samples together with a small number of labeled samples to
build a better learner. It has attracted great research interest in
both theory and practice in the past decade [1]. There exist various
approaches in SSL to exploit unlabeled samples, showing incre-
mental performance improvements [2]. Among them, graph-based
methods, also known as manifold methods [3,4], are widely used
due to their good performances [3,5,6].

Through establishing the graph structure to represent adjacency
relations among samples, the graph-based SSL methods can approx-
imate the intrinsically low-dimensional manifold structure well [7].
Existing ways for graph construction include K-nearest-neighbor
(KNN) method and ε-ball based method [5,6]. In general, they
construct the graph structure in two steps: (1) choosing adjacency
samples needed to be connected, and (2) determining the edge
weights [6]. l1 graph, recently proposed by [4], is constructed at one

run by solving each sample's sparse representation based on the rest
of the entire sample set. It can surpass KNN method and ε-ball based
method due to its characteristics of the high discriminative power,
sparsity, and adaptive neighborhood [8]. However, these graph-based
SSL methods have common drawbacks: high computational cost
always comes together with the graph construction. When the
adjacency relations among samples are computed to construct the
graph structure, the complexity is Oðmn2Þ [3], where n is the number
of data samples and m is the dimensionality of the sample feature.

The graph-based SSL methods do not meet the cluster assump-
tion. The cluster assumption states that if points are located in the
same cluster, they are likely to belong to the same class. The
success of SSL relies highly on certain semi-supervised assump-
tions (SSA) on the samples' distribution, which includes manifold
and cluster assumptions [1]. The manifold assumption indicates
that the high dimensional data lie on a low-dimensional manifold.
Graph-based methods have not explored the cluster information
of input distribution, so they may connect data points of different
classes in cluster boundaries by the Euclidean distances of their
feature vectors.

In order to overcome the above shortcomings of the graph-based
SSL methods, we propose a new Semi-supervised learning method
based on SPArse model, named SSPA. With the SSPA model, following
advantages are achieved: Firstly adjacency relations among samples
can be achieved by sparse matrix multiplication with a complexity of
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Oðsn2Þ [9], where s is the average number of nonzero elements in each
sparse representation and far less than the feature dimensionality m,
so Oðsn2Þ5Oðmn2Þ. Secondly, we explore the fact that the dictionary
in SSPA model has the same cluster information as the training data
samples, and thus we propose a structured dictionary learning
algorithm to learn a structured dictionary which has explicit cluster
information. With the structured dictionary the structured sparse
model can be used in SSPA to gain better accuracy.

The main contribution of the work is that we propose a new
SSPA model, with two kinds of dictionaries: non-structured [10]
and structured. The SSPA model has a lower computational
complexity than the graph-based SSL methods. With the struc-
tured dictionary the SSPA model can utilize the cluster information
to improve the classification accuracy. The experimental results
demonstrate that the proposed methods are efficient and outper-
form state-of-the-art graph-based SSL methods.

2. Related work

This work is closely related to the graph-based SSL methods
and sparse model.

2.1. Graph-based SSL methods

Graph-based SSL methods make good use of manifold structure
to explore the geometric structure behind labeled and unlabeled
data. In general, firstly a graph is formed over the labeled and
unlabeled points, and then the label information can be propa-
gated over the graph. Zhu and Ghahramani proposed a label
propagation algorithm [5] through the graph representation.
Szummer and Jaakkola presented a closely related approach with
[5] which used random walks through the graph to assign labels
[11]. Deng and He used the graph structure as a prior to guide
semi-supervised Discriminant Analysis [12]. Bekin and Niyopi
introduced a Manifold Regularization (MR) framework which, in
contrast to purely graph-based SSL methods, had the capability of
out of samples extension [6]. Ni et al. proposed a criteria to
construct a graph with the pursued optimal feature representation
for SSL [13]. Liu et al. used linear combinations of a small number
of anchor points to construct a large graph for SSL [14]. Though the
graph structure is widely used, it does not always bring positive
effects for learning and sometime it may hurt the learning results.
Some examples are illustrated in our experiments.

The traditional graph construction methods do not explore the
cluster information of input distribution. However, cluster struc-
tures can benefit the graph construction. Specifically cluster
information can help to remove the adjacency links among
different clusters. By exploring the cluster information the pro-
posed methods have the ability to depict the whole structures of
input space (i.e. multiple clusters and manifolds), and compare
samples with their location information.

2.2. Sparse model

Recent researches have shown that sparsity can help to
improve the performances of various machine learning problems,
such as the classification problem [15] and the feature extraction
problem [16,17]. Existing sparse model methods can be generally
classified into the following two categories:

(1) The entire database is used as the dictionary, and each data point
can be represented by a linear combination of the rest data
points. Wright et al. [18] demonstrated that sparse representa-
tion can be used for direct face recognition. Elhamifar exploited
the block structure of the training database with structured

sparse representation [19]. Sparse representation on the training
database was used to cluster data by Elhamifar and Vidal [20].

(2) Dictionary is learnt from data. Dictionaries, which were
learned from different class databases, had been used for
clustering problem [21,22]. Raina et al. proposed a method
to learn a common dictionary from a few databases to extract
new features for transfer learning task [23]. Mairal and Bach
[24] proposed an online optimization algorithm based on
stochastic approximation to learn the dictionary from large-
scale databases.

The l1 graph proposed by [4] belongs to the first category. It is
solved by l1 norm optimization on the whole training samples, and
has been used for SSL problem [25]. However, using the whole
training database as a large redundant and coherent dictionary
makes l1 graph unstable and expensive [21]. Thus, in our proposed
SSPA model we learn the dictionary to provide more stable and
effective l1 norm optimization. Specifically, we have implemented
SSPA algorithms with two kinds of dictionaries: (1) non-structured
dictionary learned by [10] is used to ensure that the distribution of
dictionary coincides with that of the whole training set; (2) struc-
tured dictionary learned by the proposed algorithm in Section 3.3
is used to meet the cluster assumption.

3. SSPA model

This section elaborates on the formulation of the SSPA model,
and theoretically proves that the proposed SSPA model is capable
of depicting the cluster and manifold structures of data samples.

3.1. Overview

With a set of l labeled samples ðxi; yiÞli ¼ 1 and a set of u
unlabeled samples ðxjÞlþu

j ¼ lþ1, the SSPA model is given by

f n ¼ arg min
f AHk

1
l
∑
l

i ¼ 1
VðzðxiÞ; yi; f ÞþrA‖f‖2k

þ rI
ðuþ lÞ2

∑
lþu

i;j ¼ 1
ðf ðzðxiÞÞ� f ðzðxjÞÞÞ2Mij; ð1Þ

where M is the adjacency matrix, V is a standard loss function on
labeled samples and zðxiÞ is an optimization representation of
feature vectors. We apply the representation introduced by Balcan
et al. [26] in this work. Our SSPA model aims to measure the
similarity between two samples through a special l1 norm opti-
mization problem, which is the following sparse model proposed
by [10]

gðxj;DÞ ¼ arg min‖αj‖1; s:t: Dαj ¼ xj; DAX; ð2Þ
where DARm�kðmokÞ is the over-complete dictionary consisting
of k bases, αARk is the sparse representation of feature vector
xARm, and data matrix X ¼ fx1;…; xng.

Those atoms of D learned from samples through traditional
dictionary learning algorithms [24,27] are easy to be excessively
coherent, and can not coincide with the original data items. Thus, we
restrict those atoms to be the subset of the database as in Eq. (2)
(DAX). Specifically, those atoms of D are on behalf of the databases,
and the dictionary D in Eq. (2) can be learned by our former work
[10] to depict the cluster structure of data samples. For arbitrary pair
of samples xp, xt, their similarity weight is

Mðxp; xtÞ ¼ ðαpαT
t Þ ¼ ðgðxp;DÞTgðxt ;DÞÞ ð3Þ

Manifold structure of the training samples can be achieved by
Eq. (3), due to the characteristics of SSPA model as detailed in next
subsection. The adjacency matrix M is computed through a sparse
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