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a b s t r a c t

This paper deals with robust exponential stability of Markovian jumping stochastic Cohen–Grossberg
neural networks (MJSCGNNs) with mode-dependent probabilistic time-varying delays, continuously
distributed delays and impulsive perturbations. By construction of novel Lyapunov–Krasovskii functional
having the triple integral terms, the double integral terms having the positive definite matrices dependent
on the system mode and MJSCGNNs system transformation variables, new delay-dependent exponential
stability conditions are derived in terms of linear matrix inequalities (LMIs). By establishing a stochastic
variable with Bernoulli distribution, the information of probabilistic time-varying delay is considered and
transformed into one with deterministic time-varying delay and stochastic parameters. Furthermore, a
mode-dependent mean square robust exponential stability criterion is derived by constriction of new
Lyapunov–Krasovskii functional having modes in the integral terms, linear matrix inequalities and some
stochastic analysis techniques. Finally, two numerical examples are provided to show the effectiveness of
the proposed methods.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Cohen–Grossberg neural network (CGNN) model, proposed
by Cohen and Grossberg [1] in 1983, has attracted considerable
attentions due to their extensive applications in classification of
patterns, associative memories, image processing, quadratic opti-
mization and other areas. Over a decade, many scientific and
technical workers have been joining the study fields with great
interest, and various interesting results for CGNNs with/without
delays have been reported [2–11]. Because time delays are often
encountered in very large scale integration (VLSI) implementa-
tions of artificial neural networks due to delay transmission line
and partial element equivalent circuit (PEEC), delayed neural
networks (DNNs) have become a focus of research and a great
number of results have been reported in the literature. As is well
known, in real nervous systems, synaptic transmission is a noisy
process brought on by random fluctuations from the release of

neurotransmitters and other probabilistic causes [12]. On the other
hand, it has been pointed out in [13] that a neural network could
be stabilized or destabilized by certain stochastic inputs. Besides
time delays, in the applications and designs of networks, some
unavoidable uncertainties, which result from using an approxi-
mate system model for simplicity, parameter fluctuations, data
errors, and so on, must be integrated into the system model. Such
time delays, parametric uncertainties and stochastic disturbances
may significantly influence the overall properties of a dynamic
system. Therefore, it is of practical importance to study the stochastic
effects on the stability property of delayed CGNNs [14–26].

Meanwhile, in a real system, time-delay often exists in a
random form, i.e., some values of time-delay are very large but
the probability taking such large values is very small, which will
lead to some conservatism if only the information of variation
range of time-delay is considered. Thus, recently, some researchers
have considered the stability for various neural networks with
probability-distribution delays [27–34]. Markovian jump systems,
introduced by Krasovskii and Lidskii [35] in 1961, have received
increasing attentions in the past years [36,37]. It should be noted
that Markovian jump systems can be considered a special class of
hybrid systems, which can be described by a set of linear systems
with the transitions between models determined by a Markovian
chain in a finite mode set. This kind of systems has applications in
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economic systems, modeling production systems and other prac-
tical systems. In this regard, a great number of results on stability
analysis for neural networks with Markovian jumping parameters
have been reported in the literature and various approaches have
been proposed [38,39] and references therein.

On the other hand, impulsive effects exist widely in many
evolution processes in which states are changed abruptly at certain
moments of time, involving such fields as medicine and biology,
economics, mechanics, electronics and telecommunications, see
for example [40] and references therein. Thus, the study of
impulsive neural networks with delays is a very good research
topic in recent years and many researchers have investigated the
problem of stability analysis of impulsive neural networks with
delays [41,42]. Neural networks are often subject to impulsive
perturbations that in turn affect dynamical behaviors of the
systems [43]. Therefore, it is necessary to take impulsive effects
into account on dynamical behaviors of neural networks [44–47].
To the best of the author's knowledge, very few results on the
problem of exponential stability analysis for Markovian jumping
stochastic Cohen–Grossberg neural networks with mode-
dependent probabilistic time-varying delays and impulses have
been studied in the literature. This motivates our present research.

Inspired by the above discussions, in this paper, the robust
exponential stability results for Markovian jumping stochastic
Cohen–Grossberg neural networks (MJSCGNNs) with mode-
dependent probabilistic time-varying delays, continuously distrib-
uted delays and impulsive perturbations are considered. By con-
structing of novel Lyapunov–Krasovskii functional having the
triple integral terms and introducing of free-weighting matrices,
several new criteria for global exponential stability of MJSCGNNs are
derived, which are expressed in terms of LMIs. Finally, the results
are illustrated through some numerical simulation examples.

Notation: Let Rn denote the n-dimensional Euclidean space and
the superscript “T” denote the transpose of a matrix or vector. I
denotes the identity matrix with compatible dimensions. diagð⋯Þ
denotes a block diagonal matrix. For square matrices, M1 and M2,
the notation M14 ðZ ; o ; r ÞM2 denotes M1�M2 is a positive-
definite (positive-semi-definite, negative, negative-semi-definite)
matrix. λminð�Þ and λmaxð�Þ stand for the minimum and maximum
eigenvalues of a given matrix. Let ðΩ;F;PÞ be a complete prob-
ability space with a natural filtration fFtgtZ0 and E½�� stand for the
correspondent expectation operator with respect to the given
probability measure P. Also, let τ40 and Cð½�τ;0�;RnÞ denote
the family of continuously differentiable function ϕ from ½�d;0� to
Rn with the norm JϕJ ¼ sup�drθr0jϕðθÞj, where j � j is the
Euclidean norm in Rn and d¼maxfd2g. Denote by CbF0

ð½�d;0�;RnÞ
the family of bounded F0�measurable, Cð½�d;0�;RnÞ�valued ran-
dom variables ξ¼ fξðθÞ : �drθr0g such that

R 0
�d EjξðθÞj2 dso1.

2. Problem description and preliminaries

In this paper, the Markovian jump stochastic CGNNs with both
impulsive perturbations and mixed time delays are described as
follows:

dxðtÞ ¼ � ~aðxðtÞ; rðtÞÞ½ ~bðxðtÞ; rðtÞÞ�AðrðtÞÞ~f ðxðtÞÞ�BðrðtÞÞ ~gðxðt�dðtÞÞÞ
�CðrðtÞÞ R t

�1 Kðt�sÞ ~hðxðsÞÞ ds� dt
þsðxðtÞ; xðt�dðtÞÞ; R t

�1 Kðt�sÞ ~hðxðsÞÞ ds; rðtÞÞ dwðtÞ; tatk;

xðtkÞ ¼DkðrðtÞÞxðt�k Þ; t ¼ tk;

8>>>>><>>>>>:
ð1Þ

for tZ0 and k¼ 1;2;…, where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T is the
state vector associated with the n neurons, ~aðxðtÞ; rðtÞÞ ¼ diag
ð ~a1ðx1ðtÞ; rðtÞÞ, ~a2ðx2ðtÞ; rðtÞÞ;…; ~anðxnðtÞ; rðtÞÞÞ denotes the amplifica-
tion function and assumed to be positive, bounded and locally

Lipschitz continuous, ~bðxðtÞ; rðtÞÞ ¼ ½ ~b1ðx1ðtÞ; rðtÞÞ, ~b2ðx2ðtÞ; rðtÞÞ;…;
~bnðxnðtÞ; rðtÞÞ� denotes the appropriately behaved function such
that the solution of the system given in (1) remains bounded. The
matrices AðrðtÞÞ ¼ ðaijðrðtÞÞÞn�n;BðrðtÞÞ ¼ ðbijðrðtÞÞÞn�n and CðrðtÞÞ ¼ ðcij
ðrðtÞÞÞn�n are the connection weight matrix, the time varying delay
connection weight matrix, and the distributed delay connec-
tion weight matrix, respectively; ~f ðxðtÞÞ ¼ ½ ~f 1ðx1ðtÞÞ; ~f 2ðx2ðtÞÞ;…; ~f n
ðxnðtÞÞ�T , ~gðxðtÞÞ ¼ ½ ~g1ðx1ðtÞÞ; ~g2ðx2ðtÞÞ;…; ~gnðxnðtÞÞ�T and ~hðxðtÞÞ ¼ ½ ~h1

ðx1ðtÞÞ; ~h2ðx2ðtÞÞ;…; ~hnðxnðtÞÞ�T are the neuron activation functions.
wðtÞ ¼ ðw1ðtÞ;w2ðtÞ;…;wnðtÞÞ is an n-dimensional standard Brow-
nian motion defined on a complete probability space ðΩ;F;PÞ.
Moreover, we assume that the Brownian motion fwðtÞ; tZ0g is
independent from the Markov chain frðtÞ; tZ0g. Kðt�sÞ ¼ ðKij

ðt�sÞÞn�n and the delay kernel Kijð�Þ is a real valued non-negative
continuous function defined on ½0;1Þ and such that

R1
0 Kij

ðθÞ dθ¼ 1 for i; j¼ 1;2;…;n.
Let frðtÞ; tZ0g is a right-continuous Markov chain on a com-

plete probability space ðΩ;F ;PÞ taking values in a finite state
space S ¼ f1;2;…;Ng with generator Γ ¼ ðδijÞN�N given by

PfrðtþΔtÞ ¼ jjrðtÞ ¼ ig ¼
δijΔtþoðΔtÞ; ia j;

1þδiiΔtþoðΔtÞ; i¼ j;

(

where Δt40 and limΔt-0oðΔtÞ=Δt ¼ 0, δijZ0 is the transition
rate from i to j, if ia j while δii ¼ �∑N

j ¼ 1; ja iδij.
DkðrðtÞÞARn�n; kAZþ is the impulse gain matrix at the moment

of time tk. The discrete set ftkg satisfies 0¼ t0ot1o⋯otko⋯,
limk-1tk ¼1. xðt�k Þ and xðtþk Þ denote the left-hand and right
hand limits at tk, respectively. Assume that x(t) is right-continuous,
i.e., xðtþk Þ ¼ xðtkÞ. dðtÞZ0 denotes the time-varying delay and is
assumed to satisfy 0rdðtÞrd2. To ensure the existence of a
solution to (1), it is assumed that the time-varying delay d(t) has
a bounded derivative. In practice, there exists a constant d1, where
0rd1rd2, such that d(t) takes values in ½0; d1� and ðd1; d2� with
certain probability. Therefore, d(t) is a random variable which
takes values in the intervals ½0;d1� and ðd1; d2�.

In this paper, the following assumptions on the neuron activa-
tion functions, amplification function, the behaved function, and
probability distribution are made.

Assumption 2.1. The neuron activation functions ~f jð�Þ; ~gjð�Þ and
~hjð�Þ satisfy ~f jð0Þ ¼ ~gjð0Þ ¼ ~hjð0Þ ¼ 0 and

bu�
1j r

~f jðxÞ� ~f jðyÞ
x�y

rbuþ
1j ; ð2Þ

bu�
2j r

~gjðxÞ� ~gjðyÞ
x�y

rbu þ
2j ; ð3Þ

bu�
3j r

~hjðxÞ� ~hjðyÞ
x�y

rbuþ
3j ; ð4Þ

for all x; yAR, xay, i¼ 1;2;…;n; j¼ 1;2;…;m. The constants bu�
1j ,buþ

1j , bu �
2j , buþ

2j , bu�
3j , buþ

3j in Assumption 2.1 are allowed to be positive,
negative or zero.

Assumption 2.2. There exist positive constants a0ij; a
1
ij ði¼ 1;2;…;

N; j¼ 1;2;…;nÞ such that

0oa0ijr ~ajðxjðtÞ; iÞra1ij

for all xjðtÞAR; rðtÞ ¼ i; iAS and j¼ 1;2;…;n.

Assumption 2.3. There exist positive constants ζ ij ði¼ 1;2;…;N;
j¼ 1;2;…;nÞ such that

xjðtÞ ~bjðxjðtÞ; iÞZζ ijx
2
j ðtÞ

for all xjðtÞAR; rðtÞ ¼ i; iAS and j¼ 1;2;…;n.
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