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a b s t r a c t

The Traditional Linear Regression Classification (LRC) method fails when the number of data in the
training set is greater than their dimensions. In this work, we proposed a new implementation of LRC to
overcome this problem in the pattern recognition. The new form of LRC works even in the case of having
low-dimensional excessive number of data. In order to explain the new form of LRC, the relation between
the predictor and the correlation matrix of a class is shown first. Then for the derivation of LRC, the null
space of the correlation matrix is generated by using the eigenvectors corresponding to the smallest
eigenvalues. These eigenvectors are used to calculate the projection matrix in LRC. Also the equivalence
of LRC and the method called Class-Featuring Information Compression (CLAFIC) is shown theoretically.
TI Digit database and Multiple Feature dataset are used to illustrate the use of proposed improvement on
LRC and CLAFIC.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Subspace methods are widely used in several pattern recogni-
tion (PR) areas [1–3]. Also Linear Regression Classification (LRC) [4]
has become a popular subspace method in face recognition area.
Several methods inspired from LRC are proposed by the researchers
[5–7]. In appearance-based methods a w� h sized image is repre-
sented with a point in wh-dimensional space, i.e., for a 30� 40
dimensional image, where feature space turns out to be 1200
dimensional. Since the number of feature vectors in the training
set is very small with respect to the dimension of the feature
vectors in face recognition problems, LRC can be easily applied as a
subspace method. But LRC cannot be directly applied to the PR
problems where the number of samples is greater than the
dimension of the samples because the projection of the data onto
the subspace spanned by training set samples will cover the whole
space, that is, the predictor of a class will span the whole space.

CLAFIC is one of the earliest and well-known subspace methods
[8,9]. It is used in many pattern recognition areas [10–12]. In this
method, Principal Component Analysis (PCA) is used to compute
the basis vectors of the class specific subspace. A test sample is
assigned to the class where it has the largest length in that
subspace.

In this paper, we proposed a method that makes the LRC method
applicable to PR problems where the number of samples (N) in a
class is greater than the dimension of the samples (n). In this
proposal, we take the advantage of the relation between the
predictor of a class and the eigenvectors of the correlation matrix.
Firstly, it is shown that the column space of the predictor of a class
is the same subspace spanned by the correlation matrix's eigen-
vectors that correspond to the nonzero eigenvalues. In the case
of having larger number of samples than their dimensions, noN,
all the eigenvalues of the correlation matrix are nonzero and its null
space does not exist. However the correlation matrix's eigenvectors
corresponding to the smallest eigenvalues (since all are positive)
can be used to build a similar subspace idea with the null space of
the correlation matrix. In all these cases we also show that LRC and
CLAFIC methods yield identical results in classification.

It is better to start with the definition of a correlation matrix for
a set of feature vectors not to cause any misunderstanding.

Definition. Let wi; i¼ 1;…;N be the feature vectors of a class or
they are the data in the training set of a class. Then the correlation
matrix can be calculated as R¼WWT [13], where W is a matrix of
the form
W ¼ ½w1⋮w2⋮⋯⋮wN � ð1Þ

It is known that the correlation matrix R is positive semidefinite
and symmetric, therefore all the eigenvalues are nonnegative [13].
This definition will be used in the following sections.

A review of LRC is given in Section 2. Also relations between hat
matrix, predictor and the correlation matrix of a class are given in
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the same section if n4N. Implementation of LRC, when having
noN case, is explained in Section 3. The equivalence of LRC and
CLAFIC is shown in Section 4. Experimental work is given is
Section 5 and the conclusion is given in Section 6.

2. Review of Linear Regression Classification

In this section a review of LRC is given first. Also the relations
between the hat matrix, the predictor, and the correlation matrix
are given later. It is proved that the hat matrix and the projection
matrix obtained by using the eigenvectors corresponding to the
nonzero eigenvalues are the same projection matrices. Therefore
the estimations of vector a obtained by using these two projection
matrices will be the same.

2.1. Linear Regression Classification

Assume that we have C classes and each class has N samples in
the n-dimensional feature space. Let wi

k; k¼ 1;…;N be the
n-dimensional feature vectors in the training set of the ith class.
It is also assumed that n is larger than N. Then the predictor of the
ith class is

W i ¼ ½wi
1⋮w

i
2⋮⋯⋮wi

N �: ð2Þ
If a feature vector a belongs to the ith class, then it can be

represented by the linear combinations of these feature vectors
with an error ε according to LRC. Hence

a¼W iβiþε ð3Þ
where βi is N � 1 dimensional parameter vector. The sum of error
squares is

S¼ εTε¼ ða�W iβiÞT ða�W iβiÞ
After the minimization with respect to βi, the estimation of the
vector parameters becomes

~β i ¼ ðWT
i W iÞ�1WT

i a ð4Þ
Then the estimation of the vector a is

~a i ¼W iðWT
i W iÞ�1WT

i a ð5Þ
Here the projection matrix

Hi ¼W iðWT
i W iÞ�1WT

i ð6Þ
is called the hat matrix for class i. The classification is done
according to the following distance criteria, i.e.,

Cn ¼ argmin
i

f‖a� ~a i‖g; i¼ 1;2;…;C ð7Þ

2.2. Relations between hat matrix, predictor, and correlation matrix
of a class

Let the subspace spanned by the predictor of the class i be Vi,
then

Vi ¼ span fwi
1;w

i
2;…;wi

Ng ¼ spanfW ig ð8Þ
Let Ti be the orthonormal vector set fq1;q2;…qNg that can be
obtained by applying the Gram-Schmidt orthogonalization to the
predictorW i of the ith class, and let Q i be a matrix whose columns
are the vectors of the set Ti, that is,

Q i ¼ ½qi
1⋮q

i
2⋮⋯⋮qi

N � ð9Þ
Then the columns of Q i also span Vi, thus Vi ¼ spanðQ iÞ.
The following theorem is given to prove this claim.

Theorem 1. The hat matrix of the ith class Hi ¼W iðWT
i W iÞ�1WT

i
and the projection matrix onto the column space of Q i are the same,
that is, Hi ¼Q iQ

T
i .

Proof. W i can be factorized using QR decomposition as W i ¼
Q iMi. Additionally, W i and Q i with orthogonal columns span the
same subspace. Mi is an upper triangular matrix. The j; kð Þth entry
of Mi is given as.

mjk ¼
wi

j

� �T
qi
k; kr j

0; k4 j

8<
:

W iðWT
i W iÞ�1WT

i ¼ ðQ iMiÞððQ iMiÞTQ iMiÞ�1ðQ iMiÞT

¼Q iMiðMT
i Q

T
i Q iMiÞ�1MT

i Q
T
i

¼Q iMiðMT
i IMiÞ�1MT

i Q
T
i

¼Q iMiM
�1
i M�T

i MT
i Q

T
i

¼Q iQ
T
i

This completes the proof. □
In the following two theorems it will be shown that the

subspace spanned by the predictor of a class in Eq. (2) and the
range space of the correlation matrix are the same subspaces.

Theorem 2. Let the null space of the ith class correlation matrix
Ri be Null Rið Þ ¼ fxAℝnjRix¼ 0g and let the complementary subspace
of Vi be V ?

i ¼ fxAℝnjxTwi ¼ 0; 8wiAVig. Then Null ðRiÞ ¼ V ?
i

holds.

Proof. (i) Let x be a vector lying in V ?
i then xTwi ¼ 0 for allwiAVi.

Rix¼W iW
T
i x¼ wi

1⋮w
i
2⋮⋯⋮wi

N

h i
ðwi

1ÞT

ðwi
2ÞT

⋮
ðwi

NÞT

2
666664

3
777775
x ¼ wi

1⋮w
i
2⋮⋯⋮wi

N

h i
0
0
⋮
0

2
66664

3
77775¼ 0:

Thus xA Null Rið Þ, so

V ?
i � Null ðRiÞ: ð10Þ

(ii) Let x be a feature vector in the null space of the correlation
matrix of the ith class, Ri, then Rix¼ 0. Multiply the equation from
the left side by xT ,

xTRix¼ 0

xTW iW
T
i x¼ 0

ðWT
i xÞTWT

i x¼ 0

jjWT
i xjj ¼ 0

ðwi
kÞTx¼ 0; i¼ 1;2;…;N ð11Þ

We know that wi
k
0s in Eq. (11) form a basis for Vi, then xAV ?

i .
Therefore the following holds:

Null ðRiÞ � V ?
i ð12Þ

By combining Eqs. (10) and (12), we will end up with
Null ðRiÞ ¼ V ?

i . □

Theorem 3. If ui
k; k¼ 1;2;…;N are the eigenvectors corresponding

to the nonzero eigenvalues of the correlation matrix Ri , then Vi ¼
spanfui

1;u
i
2;…;ui

Ng.

Proof. It is known that Null ðRiÞ ¼ spanfui
Nþ1;u

i
Nþ2;…;ui

ng where
ui
k; k¼Nþ1;…;n are the eigenvectors corresponding to the zero

eigenvalues. From Theorem 2, Null ðRiÞ ¼ V ?
i , then V ?

i ¼ span
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