
Distributed machine learning in networks by consensus

Leonidas Georgopoulos a,n, Martin Hasler b

a Avenue de l'Eglise Anglaise 12, CH-1006 Lausanne, Switzerland
b School of Computer and Communication Sciences, École Polytechnique Fédéral de Lausanne (EPFL). EPFL IC ISC LANOS, Station 14, CH-1015 Lausanne,
Switzerland

a r t i c l e i n f o

Article history:
Received 15 September 2011
Received in revised form
28 September 2012
Accepted 3 December 2012
Available online 8 April 2013

Keywords:
Distributed machine learning
Parallel machine learning
Gradient descent
Consensus
Peer-to-peer learning
Neural networks

a b s t r a c t

We propose an algorithm to learn from distributed data on a network of arbitrarily connected machines
without exchange of the data-points. Parts of the dataset are processed locally at each machine, and then
the consensus communication algorithm is employed to consolidate the results. This iterative two stage
process converges as if the entire dataset had been on a single machine. The principal contribution of this
paper is the proof of convergence of the distributed learning process in the general case that the learning
algorithm is a contraction. Moreover, we derive the distributed update equation of a feed-forward neural
network with back-propagation for the purpose of verifying the theoretical results. We employ a toy
classification example and a real world binary classification dataset.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider the case of supervised machine learning, but in a
distributed setting where the dataset is partitioned and a part
resides at each machine in the communication network. We
assume that for some reason, we are unwilling to communicate
the data between machines, or gather it centrally for computation.
Instead of just using the local data at each machine, we would like
to learn from the entire dataset but without exchange of data-
points. This is accomplished by employing the consensus algo-
rithm, which is briefly reviewed in this paper, Section 1.2.

There are numerous occasions where the entire dataset may
not be available. We conceive these as combinations of the
following four basic cases. First, the dataset is too large to be
handled by a single machine due to either hardware, software
implementation, and or algorithmic limitations. Second, data is
intrinsically distributed. That is the case when data is generated by
a set of machines which acquire data by observation or examina-
tion (e.g. a set of sensors for environmental monitoring). Third,
when data has to remain private but decisions are better per-
formed globally (e.g. when working with clinical patient data).
Finally, when data cannot be collected. Hence, it is inaccessible
or its access is practically infeasible. This might be due to many
reasons, among those just a few are communication costs and

failures, energy consumption, and machine downtime. A few of
the possible applications where the problem arises are wireless
sensor networks, data mining in large datasets, distributed data-
bases, social networks, robotic applications, and inference from
confidential or private data.

1.1. Problem layout

For the rest of this paper we assume a dataset, partitioned and
distributed over different machines in an arbitrary manner. Our
purpose is to learn from the dataset such that any of the machines
when presented with an example from the same generating
process can successfully classify it. Moreover, we wish that the
classification performed by any machine is identical and the
performance equivalent to a centralised case. Moreover, this has
to be achieved without exchanging any data-points between the
machines. Specifically, any machine can communicate with other
machines but not necessarily with every other machine. However,
we require that the connection graph has no disconnected
components. Obviously, disconnected components cannot be
brought to agreement by means of communication algorithms.

In our algorithm, the elementary learning process, risk compu-
tation and model update, is modified, and becomes a two phase
process. The first phase consists of learning with the dataset
available locally. This is performed simultaneously at every
machine. Therefore, identical learning machines are trained locally
but with different data drawn from the same generating process.
In the second phase, the parameters of the model are

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2012.12.055

n Corresponding author. Tel.: +41 786272711.
E-mail addresses: g24l@ieee.org (L. Georgopoulos).

martin.hasler@epfl.ch (M. Hasler).

Neurocomputing 124 (2014) 2–12

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2012.12.055
http://dx.doi.org/10.1016/j.neucom.2012.12.055
http://dx.doi.org/10.1016/j.neucom.2012.12.055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.055&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.055&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.055&domain=pdf
mailto:g24l@ieee.org
http://dx.doi.org/10.1016/j.neucom.2012.12.055


communicated to initiate the consensus algorithm and estimate
the mean of the learned parameters. This iterated two phase
process, has roughly the same effect as if a single classifier was
trained on the entire dataset.

The use of the consensus algorithm is certainly not a prerequi-
site. The necessary step is to compute the mean of the model
updates at each step, and compute the new update with the
computed mean at each machine. The proof that such a process
converges as the non-distributed counterpart, in Section 2.1, is the
main contribution of this paper. Such a computation, may in
general be achieved with other communication protocols as well.
One may consider from broadcasting to gathering the values to
a central hub and then broadcasting the results back to the
machines. Although these approaches have their predicaments,
such as congestion, need for routing protocols, and increased
administration complexity with respect to the number of nodes
on the network and its topology, it is not in the interest of this
study to compare these different approaches in depth. The main
advantage of the consensus algorithm, which justifies its use in
this study, is that the algorithm is so simple that it can be
implemented in numerous scenarios; thus separating the theore-
tical analysis from the implementation details, without making the
work inapplicable. Nonetheless, to demonstrate that distributed
machine learning can be achieved in even the most simplistic
scenarios of ad-hoc communication networks brings additional
value to this work, and extends the list of possible applications.

1.2. Consensus algorithm

Assume a network of machines coupled in an arbitrary manner.
Let the communication graph be GðV; EÞ such that it is connected
but not fully. Suppose, every vertex i in the graph has an associated
scalar value xi∈R. The consensus algorithm computes the arith-
metic mean of these values at each vertex. This is possible just by
local communication between connected vertices.

The linear consensus algorithm as presented in [1] consists of a
simple vertex-local update equation xiðt þ 1Þ ¼∑jwijxjðtÞ, where
wij∈Rþ are coefficients associated with the edges of the graph.
Specifically, wij≠0 when vertices i and j are connected and wij ¼ 0
otherwise. These coefficients guarantee the coherence of the local
estimates. The global update equation is

xðt þ 1Þ ¼WxðtÞ ð1Þ
where the elements of W∈Rn�n are the coefficients wij on the
edges. The process is presented in Algorithm 1.

Algorithm 1. Consensus Algorithm, Sðx; qÞ.
1: Execute the while loop for every i-th machine

simultaneously
2: for t¼1 to q do
3: xi←∑n

j ¼ 1wijxj
4: end for

The convergence of the algorithm depends solely on the selection
of these coefficients. Sufficient conditions for convergence are
WT ¼W; W1¼ 1; ρðW−11T=nÞo1 where 1¼ ð1;1;1;…;1ÞT∈Rn

and ρð�Þ denotes the spectral radius. This dynamical system has
asymptotic convergence to the arithmetic mean ð1=nÞ11Tx. Practi-
cally, the number of iterations q∈Zþ affects the precision of
estimation of the mean and the level of agreement, [2].

Advantages of employing the consensus algorithm include and
may not be limited to being inherently distributed and robust,
having no need for routing tables, sub-network wide switching,
and packet switching. In the simplest case, what is necessary, but

usually trivial to employ, is the need to determine time-slots only
between networked neighbours. Moreover, the consensus algo-
rithm can be very well applied to both digital and analog networks
[3], and to LAN and WAN networks, with little effort. Moreover, it
is so simple to employ that it permits the application of this work
in even the simplest networks, such as ad-hoc wireless sensor
networks, robot swarms, and simple peer-to-peer networks, with-
out interfering with employed communication protocol stack.
Finally, the algorithm needs no central coordination center, e.g. a
switch to broadcast the packet, which distinguishes it among its
counterparts; thus allowing it to operate in completely decentra-
lised fashion.

1.3. Definitive consensus algorithm

The main drawback for the application of the consensus
algorithm is the large number of communications needed to reach
consensus. This can be alleviated if the communication coefficients
wij are switched in a timely manner [4]. This can be achieved with
the definitive consensus algorithm that in fact permits the net-
work to reach consensus in fixed and finite number of iterations.
The coefficients can be obtained by numerically solving the
equation below

WdWd−1…W1 ¼
11T

n
ð2Þ

where d is the graph diameter, and Wd;Wd−1;…;W1 are weight
matrices corresponding to G. The solutions to this equation are
easy to retrieve up to medium sized graphs with a numerical
solver [4].

1.4. Related work

Related work with the problem at hand may be found in the
field of distributed optimisation [5]. However, the interest of the
researchers there is different, i.e. accuracy, quality of solution,
convergence speed, violation of constraints, whereas in machine
learning, it is generalisation, model selection, bias, and over-fitting.
Thus optimisation cannot be considered to be equivalent to a
learning problem. In the case of optimisation, the optimised
function is known a priori. This allows for the computation of
the Jacobian, the Hessian, and the retrieval of KKT conditions that
designate the proper execution of the algorithm, and the quality of
the obtained solution; especially of the sub-gradient computed
with the consensus algorithm, which can be enforced to be within
bounds by strict knowledge of qualitative benchmarks of the
update step, such that the result is equivalent with the non-
distributed case of evaluating the gradient. In contrast, in a
machine learning process such facilities are not available since
the model of the data is unknown, and one cannot evaluate the
quality of a solution.

Outlining, a central problem of statistical learning theory is if
a family of learning models imposed by a learning algorithm is
appropriate to model the data; to shatter the data [6]. In the
distributed setting the data-points locally available are a subset of
those globally available. A learning machine that may be able to
adequately learn on a given data set, may not learn the true
underlying model on a subset of the data. The problem that arises
in distributed machine learning, is if by performing machine
learning distributively, and combining the local results, permits
to shatter the data, as in the case of the non-distributed counter-
part. This central question, lies far from previous work, and
especially from approaches in the distributed optimisation litera-
ture. We base our theoretical results on the fact that a large
number of machine learning algorithms are contractions on sets of
learning data. This approach however does not provide guarantees

L. Georgopoulos, M. Hasler / Neurocomputing 124 (2014) 2–12 3



Download English Version:

https://daneshyari.com/en/article/6866781

Download Persian Version:

https://daneshyari.com/article/6866781

Daneshyari.com

https://daneshyari.com/en/article/6866781
https://daneshyari.com/article/6866781
https://daneshyari.com

