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a b s t r a c t

Most 2D visualization methods based on multidimensional scaling (MDS) and self-organizing maps
(SOMs) use a symmetric distance matrix to represent and visualize object relationships in a data set.
In many real-world applications, however, raw data such as a world-trade data are best captured as an
asymmetric proximity matrix. Such asymmetric matrices cannot be perfectly represented by most
previous methods. To handle such an intrinsic limitation, in this paper, we propose a dynamic learning
for metric representations of asymmetric proximity data to better understand the data. The proposed
learning generates two representations (maps) with the row vectors (sending or exporting) and column
vectors (receiving or importing) of the matrix, respectively. To better present the patterns, we
supplement the maps with two analysis tools: cluster analysis and distance analysis, which connect
and compare the different patterns from the different maps. Experiment results using three real world
data sets confirm that the proposed learning method is useful to understand asymmetric proximity data.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Visualization is a procedure that helps represent the complex data
(usually in a high-dimensional space) in an effective way (usually in a
low-dimensional space). Dimensionality reduction algorithms have
been used for this purpose. Multidimensional scaling (MDS) [1]
and principal component analysis (PCA) [2] are popular linear
methods for dimensionality reduction. Manifold learning is a non-
linear dimensionality reduction approach, which induces a smooth
nonlinear low-dimensional manifold from a set of data points drawn
from the manifold. Recently, various dimensionality reduction meth-
ods (for example see [3–6]) have been developed in machine
learning community drawing an attention in pattern recognition
and signal processing.

In data analysis, many times, information is provided as a
similarity (or dissimilarity) matrix, whose elements could be the
distances between the data points. For visualization of such data,
most methods based on a dimensionality reduction approach such as
MDS or self-organizing maps (SOMs) [7] rely on a symmetric matrix
which represents the object relationships [3]. Although sometimes
those methods seem to be applied to an asymmetric matrix, they
convert the asymmetric matrix into a symmetric one, and actually
work on the symmetric matrix [8–10]. However, a symmetric matrix
cannot represent any directional relationship between data points,
while asymmetric matrix can. It means potential information loss if
we use only symmetric relationship.

In many real-world applications [11], raw data can be best
captured as an asymmetric proximity matrix. For example, a
world-trade dataset can be represented as an asymmetric matrix
with each column and each row corresponding to one country, and
each cell indicating the money amount transferred from one
country to another. Journal citation data (or bibliometric data)
is another example for asymmetric similarity (or dissimilarity),
where the numbers of citation between two journals are usually
different [12]. In pattern classification, a confusion matrix as in
Morse code [13] is asymmetric. Also, in social network service, the
following relationship as in Twitter (www.twitter.com) can be
represented as an asymmetric matrix, while the friendship as in
Facebook (www.facebook.com) is symmetric.

To visualize such asymmetric proximity data, some methods have
been proposed. However, most previous methods first decompose it
into a symmetric and a skew-symmetric component, and then put
much focus on the symmetric component using MDS-like methods
[14–17]. Those methods do not present the data as 2D points with
their asymmetric properties, and fail to visualize asymmetric proper-
ties geometrically on a metric space and also fail to discover
regularities in such data (e.g. differences between importing and
exporting within and across multiple countries). Furthermore, separ-
ating the representations of the symmetric and skew-symmetric
components makes it very hard to understand nature structures and
properties of the data set intuitively.

In fact, asymmetric relationships cannot be represented in any
single metric space including 2D space, keeping the asymmetric
properties perfectly. Once a data set is represented as points in a
metric space, their geometric relations become symmetric. MDS-like
methods implicitly assume that the proximity matrix was obtained
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from the data points in a metric space, which makes the methods not
capable of handling asymmetric matrices. Therefore, such 2D repre-
sentations cannot present the asymmetric properties. But still visual
representation, if possible, is very attractive, so we propose a
dynamic learning algorithm of asymmetric relations to represent
the asymmetric data on metric spaces. We plot the data onto two
different maps separately, focusing on one direction in the asym-
metric matrix at a time: one based on the column vectors (e.g.
importing) and one based on the row vectors (e.g. exporting).

In addition, the two maps are supposed to be considered
together, since they are derived from the same matrix. To enable
users to better understand the data, we supplement the two maps
with two analysis tools on the maps: cluster analysis and distance
analysis, allowing users to connect and compare various patterns
within each map and across two maps. These tools provide
quantitative measures of the difference between before and after
learning, or the difference between the sending map and the
receiving maps. Although the proposed method does not provide a
perfect view of asymmetric properties, it increases users’ under-
standing of the asymmetric data.

Several case studies conducted with real data sets reveal the
effectiveness of our approach. The cola-brand-switching data is
presented to explain the maps and analysis functions, and the
other data sets follow after that to confirm that the proposed
method is useful to understand asymmetric proximity data.

2. Background

2.1. Asymmetric proximity data

Given N objects with a similarity matrix S, where Sij is the
proximity between the ith and jth objects. Asymmetric relation is
defined when SijaSji. If this inequality is from noise or error, we
can symmetrize it by ðSþST Þ=2. Otherwise, we have to deal with
the asymmetric property differently from the previous methods
that are based on the symmetry assumption.

In this paper, to present how our method works, we use three data
sets: cola-brand switching data between 15 cola brands [14], threat
display behaviours data [18], and 113 countries’ trading data in 2009
from International Monetary Fund (IMF) web page, www.imf.org.
These data can be summarized as an asymmetric matrix as shown
in the left of Fig. 1. Note that for the world-trade data, we use

logarithmic values of the trade amount since the absolute amount of
trade is too much dominated by a few countries. The directional flow
of the trade among the countries can be presented as in the right of
Fig. 1. However, it is hard to understand the underlying pattern from
the matrix or the directional flow arrows.

2.2. Previous work

Although multidimensional scaling (MDS) is not perfect for
asymmetric data, it can approximately present the data points on
a 2D space after the symmetrization procedure. Many previous
methods are based on MDS and our proposed learning method
takes MDS as an initial step to present the asymmetric properties
of data.

2.2.1. Multidimensional scaling
To simply connect the asymmetric matrix to classical MDS, we

need to transform the asymmetric matrix to a distance matrix.
Given an asymmetric matrix, M for N objects, we make a
symmetric matrix

Ms ¼MþMT

2
: ð1Þ

Then, as in [1], a distance matrix, D, can be given by

Dij ¼ 1�Ms
ij: ð2Þ

Note that M is a normalized matrix by the maximum value of
the elements of M. Next, the constant adding technique is applied
to make sure that each distance is the length of two points on a
metric space, as in kernel Isomap [19]. In classical MDS, given a
distance matrix, D, a popular cost function is defined by

J ¼∑
ij
ðdðxi; xjÞ�DijÞ2; ð3Þ

where dð�; �Þ is a binary function to calculate the Euclidean distance
between two points on a low dimensional space, and X ¼ ½x1;
x2;…; xN � is a representation on the low-dimensional space. Let B
be the inner product matrix, where

B¼ X >X: ð4Þ
Considering B as a kernel matrix as described in [6], B can be
given by

B¼�1
2HD

2H; ð5Þ

Fig. 1. Asymmetric world-trade data. (Left) 113 countries' trade data matrix, (Right) the directional flow of the trade which shows only the flows with higher values than
twice the standard deviation of the matrix elements from the mean. The G7 countries' names are shown.
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