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a b s t r a c t

In recent years, dimensionality reduction has attracted a great deal of attention in the communities of
machine learning and data mining. The basic goal of dimensionality reduction is to discover the low
dimensional manifold embedded in a high dimensional space. Although some existing manifold learning
algorithms (ISOMAP, LE, LLE, LTSA, etc.) can capture the local structure of data manifold, they have poor
performance in some recognition tasks. This is mainly because that they cannot handle well with the
“out of sample” problem. Moreover, these algorithms are sensitive to the choice of nearest neighbors,
which is crucial in classification. To address these problems, this paper proposes a Robust Dimensionality
Reduction Algorithm With Local and Global Structure (RLGS) based on a novel adaptive weighting
mechanism. Hybrid structure of local and global structures is studied. By using the adaptive weight,
RLGS has the capacity of adaptively exploiting non-linear structure of data manifold and is robust to
parameters. Experiments demonstrate that RLGS performs better on public face databases compared
with other reported algorithms.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction [23,24,17,22] has attracted consider-
able attention in a number of fields, including machine learning,
pattern recognition, data compression and neural computation. In
particular, matrix completion using low-rank matrix factorization
has attracted considerable attention in the area of Dimensionality
reduction [35]. In these fields, data analysis with a large number of
features becomes prevalent. These features usually need to be
represented as the points in high dimensional space. One may
encounter the well-known problem of curse of dimensionality when
dealing with the data in such high dimensional space. In order to
obtain a compact and meaningful representation in low dimen-
sional space, dimensionality reduction algorithms are applied to
various data analysis. It aims to find the transformation between
high dimensional data and its corresponding low dimensional data.
In the ideal case, the dimensionality of reduced representation
should be the same with the intrinsic dimensionality of the data.

Mathematically, dimensionality reduction can be described as
follows. Given am� n data matrix X, which consists of n data vectors
xi, with dimensionalitym. Suppose the data matrix X has the intrinsic
dimensionality d. The goal of DR is to find a mapping L : Rm-Rd such
that yi ¼LðxiÞ, i¼ 1;2;…;n, where yiARd corresponds to the data
point xi in high dimensional space.

In the past few years, numerous unsupervised dimensionality
reduction algorithms have been developed [17,10,11,34]. In unsu-
pervised dimensionality reduction, one hope that the low
dimensional representation Y can capture as much information
as possible in high dimensional data X [33]. There are some typical
unsupervised methods such as Principal Component Analysis (PCA)
[9,19,31,32], Independent Component Analysis (ICA) [27] and Multi-
dimensional Scaling (MDS) [2] for dimensionality reduction. These
methods are not complicated to implement, however, they cannot
discover the non-linear structure of data manifold due to the
linearity. Recently, manifold learning has attracted considerable
attention. Some well known algorithms like ISOMAP [14], Locally
Linear Embedding (LLE) [10], Laplacian Eigenmaps (LE) [7,17], Local
Tangent Space Alignment (LTSA) [11], etc. have been proposed for
exploiting the non-linear structure of data manifold. ISOMAP aims
to preserve the local structure by preserving geodesic distance
between any two points xi and xj. LLE claims that the local
structure of the manifold around a datapoint xi can be represented
by linear combination of its k nearest neighbors xij . LE attempts to
keep pairwise distance between a datapoint and its k nearest
neighbor by a weighted manner, which supposes that the distance
in low dimensional representation xi and its first nearest neighbor
make a greater contribution than the distance between xi and its
second nearest neighbor [18]. LTSA tries to preserve local structure
of data manifold through aligning a collection of local tangent
subspaces onto a global coordinate system. Nevertheless, these
methods cannot provide a explicit map to new testing data for
recognition tasks. This is also known as the out of sample problem.
To overcome the dilemma, He and Niyogi [16] proposed a novel
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subspace method named Locality Preserving Projections (LPP),
which can map the new datapoints into subspace directly. As a
linear approximation to LE, LPP is the first linear algorithm that
can discover the non-linear structure of data manifold. In addition,
as the linear approximations to LLE and LTSA, Neighborhood
Preserving Embedding (NPE) [5,12] and Linear Local Tangent Space
Alignment (LLTSA) [13] are proposed to preserve the structure of
data manifold from the points of locality. Recently, Zhu et al.
presented a correlation analysis algorithm, called Mixed Kernel CCA
(MKCCA), in the reproducing kernel Hilbert space (RKHS) with
a mixture of kernels model to implement dimensionality reduc-
tion [29]. In [30], a novel Self-Taught Dimensionality Reduction
(STDR) method was proposed for dealing with the high-
dimensional and small-sized data.

Although manifold learning algorithm has been successfully
applied in many fields, these local techniques still have some short-
comings. One of the problems is that these techniques explicitly fail
to take into account the local structure in an adaptive manner.
In other words, they are not robust to the choice of the nearest
neighbors. In order to overcome this problem, this paper proposes a
Robust Dimensionality Reduction Algorithm With Local And Global
Structure (RLGS). In RLGS, a weight method pairwise similarity is
introduced to adaptively capture local structure of data manifold. The
introduced weight can preserve the structure of original data in the
low-dimensional representation by adaptively learning the relation
of different data points in original data space. The advantage of the
proposed RLGS algorithm is demonstrated by comparing its perfor-
mance with that of other dimensionality reduction algorithms over
three widely used face databases.

The remainder of this paper is organized as follows. In Section 2,
the proposed RLGS algorithm is described concretely. Section 3
demonstrates the robustness and performance of RLGS through
recognition experiments. Finally, the conclusions are given in
Section 4.

2. RLGS: robust dimensionality reduction with local and
global structure

Some notations are reported first. The data set is given by
X ¼ fx1; x2;…; xngARm�n, correspondingly, FARn�d denotes the
low-dimensional representation. W is the projection matrix, D is
a diagonal matrix with the diagonal elements Dii ¼∑jPij, 1ARn�1

is a vector with all elements as 1, b is the vector with d� 1,
I denotes the identity matrix, and Fi denotes the ith row of F.

For a sample from the ‘outside’, traditional manifold learning
algorithms like LLE, LE and LTSA, etc. cannot give an explicit map
to the low dimensional subspace, which leads to the traditional
manifold learning algorithms difficult to use in recognition tasks
directly. However, LPP, NPE, LLTSA, as the linearized version to LE,
LLE, and LTSA, respectively, they can effectively address the out
of sample problem by explicit map, thus, they can yield a good
performance in some recognition tasks. However, the choice
of the nearest neighbors has a great influence on the perform-
ance of recognition. Motivated by the previous works [1,3,25].
This paper proposes an algorithm, named Robust Dimensionality
Reduction With Local And Global Structure (RLGS). In RLGS, a
weighting method is introduced to adaptively capture the local
structure of the data manifold. The objective function is defined as
follows:
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Our objective is optimizing the three variables together, then, the
proposed objective function in Eq. (1) can be rewritten as

QðFn;Wn; bnÞ ¼ arg min
F ;W ;b; F > LF ¼ I

TrðF > PFÞ

þμ X>Wþ1b>�F 2þγ W 2;
��������� ð2Þ

where the weight Pij is defined by

Pij ¼
expð�d2ijÞ

∑iakexpð�d2ikÞ
; ð3Þ

where d2ij ¼ 1
2J ðxi�xjÞ=sJ2. Although the proposed objective func-

tion is almost the same as the related works in [20,28], there exists
the difference in the construction of the weight Pij in Eq. (1).
In [20], the proposed objective function incorporates label fitness
and manifold smoothness into a unified manifold learning frame-
work for dimension reduction, while [28] performs co-clustering
along both the sample and feature dimensions to capture the
intersample and interfeature relationships by minimizing the
fitting errors of structures of both sample and feature spaces.
Compared to the works in [20,28], the introduced weight can
preserve the structure of original data in the low-dimensional
representation by adaptive learning the relation of different data
points in original data space. It is easy to see that the weight
matrix P is symmetric because Pij ¼ Pji for any i; j. When the high
dimensional data point xi and xj are close in the intrinsic structure

Fig. 1. 2-D visualization of Frey face images (20�28 pixels, 1965 examples). Images corresponding to the points on the bound lines (top, bottom, left, right).
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