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h i g h l i g h t s

• Adaptive low-level control strategy of autonomous underwater vehicle.
• Deep reinforcement learning to solve a continuous control problem.
• Real experiments demonstrated the feasibility of deep RL for AUV low-level control.
• Only raw sensory information is used for the deep RL actor-critic architecture.
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a b s t r a c t

Low-level control of autonomous underwater vehicles (AUVs) has been extensively addressed by classical
control techniques. However, the variable operating conditions and hostile environments faced by AUVs
have driven researchers towards the formulation of adaptive control approaches. The reinforcement
learning (RL) paradigm is a powerful framework which has been applied in different formulations of
adaptive control strategies for AUVs. However, the limitations of RL approaches have lead towards the
emergence of deep reinforcement learning which has become an attractive and promising framework for
developing real adaptive control strategies to solve complex control problems for autonomous systems.
However, most of the existing applications of deep RL use video images to train the decision making
artificial agent but obtaining camera images only for an AUV control purpose could be costly in terms
of energy consumption. Moreover, the rewards are not easily obtained directly from the video frames.
In this work we develop a deep RL framework for adaptive control applications of AUVs based on an
actor-critic goal-oriented deep RL architecture, which takes the available raw sensory information as
input and as output the continuous control actions which are the low-level commands for the AUV’s
thrusters. Experiments on a real AUV demonstrate the applicability of the stated deep RL approach for
an autonomous robot control problem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous underwater vehicles are revolutionizing the
oceanic research with applications on a vast number of scientific
fields such as marine geoscience, biology and archeology but also
in the private sector such as the oil and gas industry [1,2]. Over the
years, there have been intensive efforts toward the development
of autonomous control strategies for AUVs [3]. Autonomy implies
that an entity can act independently according to its own criterion
and it is an essential feature for engineering systems in large
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and uncertain environments [4]. In this sense, adaptive low-level
control techniques have arisen as a way to provide autonomy to
AUVs allowing them to operate in hostile environments [5].

Classical control theory has evolved in a variety of methods
for low-level AUV control. Several versions of the well-known PID
controller have been developed and used for AUV control. To name
a few, in the early work of Jalving [6] a simple proportional deriva-
tive controller was proposed for AUV steering control. Fjellstad
and Fossen [7] designed a PID controller for position and attitude
tracking of an AUV and the global convergence of their proposal
was proven by Barbalat’s lemma.More sophisticated proposals can
be found in the work of Valenciaga, et al. [8] where a proportional
integrative controller for multiple inputs andmultiple outputs (PI-
MIMO) was formulated to command the rudder and the propeller
of an AUV. In the work of Sutarto and Budiyono [9] a linear

https://doi.org/10.1016/j.robot.2018.05.016
0921-8890/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.robot.2018.05.016
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2018.05.016&domain=pdf
mailto:ignacio.carlucho@fio.unicen.edu.ar
mailto:mariano.depaula@fio.unicen.edu.ar
mailto:s.wang@hw.ac.uk
mailto:y.r.petillot@hw.ac.uk
mailto:ggacosta@fio.unicen.edu.ar
https://doi.org/10.1016/j.robot.2018.05.016


72 I. Carlucho et al. / Robotics and Autonomous Systems 107 (2018) 71–86

parameter varying (LPV) control strategy based on linear fractional
transformation to formulate a robust gain schedule strategy for
robust longitudinal control of an AUV was developed. To deal
with the AUV modeling uncertainties and the saturations of the
control actions imposed by the AUV actuators, Sarhadi et al. [10],
proposed an adaptive PID formulationswith anti-windup compen-
sators and then the stability was analyzed by Lyapunov theory and
the proposed control technique was implemented in an onboard
computer to be checked in a real-time dynamic simulation envi-
ronment.

When model estimation accuracy could be imprecise and the
system nonlinearities are considered, Lyapunov-based algorithms
have many advantages for control formulations. An example can
be found in Ferreira et al. [11] where several independent con-
trollers have been developed, based only on Lyapunov theory, to
perform decoupledmotions of an AUV. In the work of Lapierre and
Jouvencel [12] a nonlinear robust control formulation resorting to
Lyapunov-based techniques was presented. In this case a virtual
target principle was used to design an asymptotically conver-
gent kinematic control, relying on a switching control strategy for
the dynamic parameters. However, the disturbance rejection was
not explicitly addressed in the formulation and the authors have
explicitly recognized that further research is needed. In another
way, developments coming from nonlinear control designs have
beenmadewhere linear transformationswere used to solve Linear
Quadratic and Gaussian regulators (LQR and LQG, respectively) as
in the work of Wadoo et al. [13] where a system linearization
is carried out for the control of the kinematic model of an AUV
and then a LQG was formulated as a H-2 optimization problem.
Geranmher et al. [14] considered a general fully coupled AUV and
applied nonlinear suboptimal control, where the state-dependent
Riccati equation was used to generate a suboptimal path solution.
In the work of Fischer et al. [15] a continuous robust integral of
the sign of the error control was used to compensate for uncertain,
nonautonomous disturbances for a coupled and fully-actuated un-
derwater vehicle. Moreover, semiglobal asymptotic stability was
proven by a Lyapunov-based stability analysis.

Underwater vehicle hydrodynamics are highly non-linear with
uncertainties that are difficult to parameterize and, in addition,
unknown disturbances are usually present as are typical of aquatic
environments. For these reasons, researchers have resorted to
adaptive controllers and have often included the dynamical model
or have estimated the system parameters in the formulation of
the controllers. Early, Fossen and Fjellstad [7] discussed the per-
formance of the adaptive control laws for controlling underwater
vehicles. Afterward, several adaptive PID formulations have been
proposed as in works of Antonelli et al. [16] where different adap-
tive versions based on PID control laws were formulated with an
adaptive compensation of the dynamics. However, in such propos-
als the control gains must be adjustedmanually, first in simulation
and then with the real system during its operation [17]. An adap-
tive on-line tuning method for a coupled two-loop proportional
controller of four degrees-of-freedom for an autonomous under-
water vehicle is presented in thework of Barbalata et al. [18]where
the gains of each controller are determined on-line according to
the error signals. Rout and Subudhi [19] developed an adaptive
tuningmethod for a PID controller using an inverse optimal control
technique based on a NARMAX model for the representations of
the non-linear dynamics. Other adaptive feedback controller was
proposed by Narasimhan and Singh [20] using LQR theory for the
computation of the optimum feedback gain vector of the control
system, in this case used for depth control of a low-speed underwa-
ter vehicle. These facts evidence a growing need for self-adapting
controllers to environmental conditions.

To enhance the different control formulations researchers have
turned their attention to artificial intelligence techniques to be

incorporated in adaptive control formulations to develop real au-
tonomous systems. Particularly, using artificial neural networks
(ANNs) in AUV control formulations has the advantage that the dy-
namics of the AUVs do not need be fully known and ANNs can learn
a full, or partial, model of the nonlinear dynamicswhich can in turn
be used for the controller design [21]. In Shi et al. [22] a hybrid
control approach for AUV depth control has been proposed using
the Lyapunov theory approach for the synthesis of an adaptive con-
troller and an ANN was employed to model the depth dynamics. A
dual closed loop control systemwas proposed in [23] where a bio-
inspired model for velocity control was used in an inner control
loop and a sliding-mode controller was used in an outer tracking
control loop which managed the position and orientation of an
AUV. Also, a traditional Lyapunov stability analysis was carried out
based on the AUV dynamic model. However, strong nonlinearities,
as in underwater vehicles applications, make this analysis difficult.
In this sense, after the development of the fuzzy logic many fuzzy
control strategies were proposed for AUV control [24–27]. Briefly,
fuzzy logic control makes a smooth approximation of a nonlinear
system using a fuzzy inference system [28] consisting of a set of
linguistic rules about the system behavior and membership func-
tions which must be conveniently defined. In the work of Raeisy
et al. [29] a simple fuzzy control formulation can be foundwith two
fuzzy control loops, one that controlled the roll and yaw and the
other the depth of the AUV, while incorporating an optimization
procedure for the fuzzy parameters using the root mean square
error between the input and the output as cost function. Recently,
Khodayari et al. [30] have proposed a self-adaptive fuzzy PID con-
troller for the attitude control of an AUV based on its previously
obtained dynamic model from mechanical principles. Also, fuzzy
control formulations for underwater vehicle-manipulator system
(UVMS) were formulated in Esfahani et al. [31]. However, one
disadvantage for using fuzzy control systems for AUVs is that
subjective knowledge is required for the definition of the fuzzy
rules and membership functions.

Other important branch with growing importance in the field
of artificial intelligence for autonomous control systems is the RL
paradigm [32]. Instead of supervised learning as ANNs, RL is a
mixed approach between supervised and unsupervised learning
using actor-critic approach with potential advantages for adaptive
control formulations in robotics [33,34]. In a nutshell, RL algo-
rithms are able to learn a control policy through the interactions
between the system and its environment. RL algorithms can be
formulated as model-free and/or model-based [35,36]. The former
uses the experience from interaction to determine directly the op-
timal control policy [32,37] while the latter uses it to learn/update
the current model of the system or to improve the value function
and/or the policy directly [38].

Particularly, for AUVs relevant works have been developed
using RL formulations. In the early work of Gaskett et al. [39] a
model-free RL algorithm was developed to control the thrusters
responses of an AUV. More recently, Carreras et al. [40] proposed
a hybrid behavior-based scheme using RL for high-level control of
an AUV. In this work a semi-online neural-Q -learning algorithm
was formulated using a multilayer neural network to learn the
internal continuous state–action mapping of each behavior. In the
work of El-Fakdi et al. [41] an on-line direct policy search algorithm
based on a stochastic gradient descent method with respect to
the policy parameter space was proposed. In this formulation, the
policy was represented by a neural network, where its weights
were the policy parameters. The states of the systems were the
inputs to the neural network and the outputswere the action selec-
tion probabilities [42]. Then, El-Fakdi and Carreras [43] developed
a simulation-based actor-critic algorithm using policy gradient
method to solve a cable tracking task. In this formulation an initial
policy is learned off-line using a hydrodynamic model of the AUV.
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