Robotics and Autonomous Systems 100 (2018) 95-107

journal homepage: www.elsevier.com/locate/robot

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

Quantitative analysis of security in distributed robotic frameworks a

Francisco Martin, Enrique Soriano, José M. Cafias *

Universidad Rey Juan Carlos, Spain

Check for
updates

HIGHLIGHTS

Many robotic applications are built with networked software components.

A threat model has been defined for robotic systems in networked system.
Experiments with communication middlewares in robotics frameworks are included.
Security does not significantly decrease the quality of robotic communications.

Some communication middlewares do not cope with big sensor readings.

ARTICLE INFO ABSTRACT

Article history:
Available online 21 November 2017

MSC:
00-01
99-00

Robotic software frameworks simplify the development of robotic applications. The more powerful
ones help to build such applications as a distributed collection of interoperating software nodes. The
communications inside those robotic systems are amenable of being attacked and vulnerable to the
security threats present on any networked system. With the robots increasingly entering in people’s
daily lives, like autonomous cars, drones, etc. security on them is a central issue gaining attention. This

paper studies several well known communication middleware used by robotic frameworks running on

Keywords:
Security
Communications
Middleware
Frameworks
Robotics

robots with regular computers, and their support for cybersecurity. It analyzes their performance when
transmitting regular robotic data of different sizes, with or without security features, on several network
settings. The experiments show that security, when available, does not significantly decrease the quality
of the robotic data communication in terms of latency and packet loss rate.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Robots have been traditionally used in industrial scenarios, but
in the last years they have matured so much that their use is
expanding to homes and streets, with people increasingly trusting
them in some part of their life. For instance, robotic vacuum clean-
ers are now robust appliances in many homes. Commercial drones
are now being used for event recording and their use in logistics
is being explored. Autoparking capability and autonomous autopi-
lots are included in some car models, driverless cars are already
legal for research in several places and autonomous transportation
systems are being tested with general public.

On their hardware, robots integrate sensors, actuators and com-
puters. Their intelligence, algorithms and behaviors mainly rely on
their software. Nowadays software is more than half of the cost
of a robotic system. The robot software, as any other software, is
amenable to suffer from security attacks. Many robots have exter-
nal connectivity, for instance to let the user interact with them (like

* Corresponding author.
E-mail address: jmplaza@gsyc.es (J.M. Cafias).

https://doi.org/10.1016/j.robot.2017.11.002
0921-8890/© 2017 Elsevier B.V. All rights reserved.

interacting with the vacuum cleaner through the smartphone). In
addition, robots are complex systems and their software rely on
robotic frameworks that simplify the development of applications.
Most successful robotic frameworks are distributed. Such useful
connectivity and distribution open the door to vulnerabilities and
robot hacking.

When the target is a robot system, security attacks have logical
and physical impact. The consequential damage of a hacked robot
is directly commensurate with the amount of trust put into the
system and is fully dependent on the capabilities of the robot.
Simply hacking a robot to operate slightly out of a specified config-
uration mode can lead to everything from minor damage to death.
Many attack examples have been reported, like the capture of a
US Predator military drone (UAV) by the Iranian forces in 2011 [1].
Another relevant example is the remote hacking of a Jeep Cherokee
carin 2014 [2].

Typically the robotics community has lived in a “happy
naivety” [3]. For instance, the most popular robotic framework
does not include any security mechanism. Researchers have dis-
covered multiple common security flaws in mainstream robotic
technologies from leading vendors, leaving them wide open to


https://doi.org/10.1016/j.robot.2017.11.002
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2017.11.002&domain=pdf
mailto:jmplaza@gsyc.es
https://doi.org/10.1016/j.robot.2017.11.002

96 F. Martin et al. / Robotics and Autonomous Systems 100 (2018) 95-107

attack. Recently, cybersecurity in robotics is gaining attention [4,5].
There is an increasing number of presentations about robotic sys-
tems in cybersecurity conferences (like DEF CON or RSA) and jour-
nals (like ACM Transactions on Cyber-Physical Systems (TCPS)),
including many domains like rescue robotics [6], teleoperated
robots [7,8] or industrial robots [9].

Providing mechanisms to avoid undesired attacks and exploits
in robot communication software is becoming increasingly re-
quired. Most promising solutions include security mechanisms
inside the robot frameworks. Not all the security solutions are
suitable for robotic environments. For instance, they have to com-
ply with the general requirement of real-time operation, their
computational cost cannot be huge.

The goal of this paper is to quantitatively study the security
solutions for communication explored inside distributed robotic
frameworks. The performance of different communication mid-
dleware like Ice, Fast-RTPS (a DDS implementation) and the ROS
transport system are compared when transmitting typical robotic
data of different sizes (laser readings, images and point clouds). The
experiments have been carried out in several network scenarios:
local inside a single machine, an ethernet network and a WiFi
network. Data transmission with and without security have been
done in the bench tests, and the cost of the secure communications
has been measured in terms of latency and data loss rate.

Section 2 presents the utility of the robotic frameworks and
some illustrative examples. The security problems in robot soft-
ware are introduced, classified and commented in Section 3, in-
cluding three communication choices. Section 4 describes the
methodology followed, the experiments performed and the re-
sults. Finally some conclusions end the paper.

2. Robotic frameworks

In the last years, several robotic frameworks (SDKs) have ap-
peared. They simplify and speed up the development of robot
applications [10,11] . They favor the portability of applications
between different robots, and ease the code reusability and inte-
gration. Modern robotic frameworks are based on software engi-
neering criteria more than in cognitive issues. Their major achieve-
ments are: (i) the hardware abstraction, hiding the complexity of
accessing heterogeneous hardware (sensors and actuators) under
standard interfaces; (ii) the distribution capabilities, that allow
to run complex systems spread over a network of computers;
(iii) the multiplatform and multilanguage capabilities, that enable
the developer to program and run the software in several computer
types, robots and programming languages; and (iv) the existence
of big communities around them, that share code, tools and algo-
rithms.

There are several communication mechanisms and choices for
providing the distribution capabilities. For instance, the Publish-
Subscribe paradigm, the Remote Procedure Call (RPC) paradigm,
distributed object-oriented models (like Common Object Request
Broker Architecture, CORBA), the use of name servers, the use of
central servers vs peer-to-peer communications, the use of specific
well known communication middleware like Ice or DDS imple-
mentations vs the development of ad-hoc messaging software, etc.

Ice (Internet Communications Engine [12]) is an efficient, open
source and object oriented RPC framework that provides SDKs
for C++, Python, Java and other languages. It can run on various
operating systems, including Linux, Windows, OS X and Android.
It implements a proprietary communications protocol, called the
Ice protocol, that can run over TCP, TLS, UDP, and WebSocket.

DDS (Data Distribution Service [13]) is a machine-to-machine
standard that aims to enable scalable, real-time, dependable, high-
performance and interoperable data exchanges using a Publish-
Subscribe pattern. Both commercial and open-source software
implementations of DDS are available. These include application
programming interfaces (APIs) and libraries in Ada, C, C++, Java and
other languages.

2.1. Advantages

Frameworks offer a more abstract access to sensors and actua-
tors than the operating systems of simple robots do. The SDK Hard-
ware Abstraction Layer (HAL) deals with low level details accessing
to sensors and actuators, releasing the application programmer
from that complexity. In addition, it provides high-level, easy-to-
use interfaces.

Frameworks also provide a particular software architecture for
robot applications, an specific way to organize the programs and
deal with code complexity when the robot functionality increases.
There are many options here: calling to library functions, reading
shared variables, invoking object methods, sending messages via
the network to servers, etc. Depending on the programming model,
the robot application can be considered an object collection, a set of
modules talking through the network, an iterative process calling
to functions, etc.

In addition, robotic frameworks usually include simple libraries,
tools and common functionality blocks, such as robust techniques
for perception or control, localization, safe local navigation, global
navigation, social abilities, map building, etc. Libraries shorten the
development time and reduce the programming effort needed to
code a robotic application as long as the programmers can build it
by reusing the common functionality included in the SDK, keeping
themselves focused in the specific aspects of their application.

2.2. Ros

The Robot Operating System (ROS) [14,15] is one of the biggest
frameworks nowadays. It was founded by Willow Garage as an
open source initiative and it is now maintained by Open Source
Robotics Foundation. It has a growing user and developer com-
munity and its site hosts a great collection of hardware drivers,
algorithms and other tools. ROS is a set of software libraries and
tools that help to build robot applications (it includes from drivers
to state-of-the-art algorithms, and with powerful developer tools
simplifies the development of robotics projects). It is multiplatform
and multilanguage.

The main idea behind ROS is an easy to use middleware that
allows connecting several components (nodes) implementing the
robotic behavior in a distributed fashion, over a network of com-
puters using hybrid architecture. ROS is developed under hy-
brid architecture by message passing, mainly in Publish-Subscribe
fashion (topics). Message passing of typed messages allows com-
ponents to share information in a decoupled way. Therefore, the
developer does not require to know which component sends a
message, and vice versa, the developer does not know which
component or components will receive the published messages.

Nodes send and receive messages on topics. A topic is a data
transport system based on a Publish-Subscribe system. One or
more nodes are able to publish data to a topic, and one or more
nodes can read data on that topic. A topic is typed, the type of data
published (the message) is always structured in the same way. A
message is a compound data structure. It comprises a combination
of primitive types (character strings, Booleans, integers, floating
point real numbers, etc.) and messages (a message is a recursive
structure). RPC mechanisms (like services) are available as well.
Resources can be reached through a well defined naming policy
and a ROS master.

2.3. Other frameworks

Another important example is ORCA [16], an opensource frame-
work for developing component-based robotic systems. It provides
the means for defining and developing the building-blocks which
can be pieced together to form arbitrarily complex robotic systems,



Download English Version:

https://daneshyari.com/en/article/6867318

Download Persian Version:

https://daneshyari.com/article/6867318

Daneshyari.com


https://daneshyari.com/en/article/6867318
https://daneshyari.com/article/6867318
https://daneshyari.com

