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h i g h l i g h t s

• Present a new guaranteed SLAMmethods using interval methods (i-SLAM).
• Prove the convergence of i-SLAM in the presence of nonlinear and non-Gaussian models.
• Present a comparison between i-SLAM and probabilistic SLAM.
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a b s t r a c t

This paper proposes a new approach, interval Simultaneous Localization and Mapping (i-SLAM), which
addresses the robotic mapping problem in the context of interval methods, where the robot sensor noise
is assumed bounded. With no prior knowledge about the noise distribution or its probability density
function, we derive and present necessary conditions to guarantee the map convergence even in the
presence of nonlinear observation and motion models. These conditions may require the presence of
some anchoring landmarks with known locations. The performance of i-SLAM is compared with the
probabilistic counterparts in terms of accuracy and efficiency.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Mobile robotic mapping has been an essential challenge in
robotics where a robot needs an accurate map to navigate the
environment. Simultaneous Localization and Mapping (SLAM) has
been an active topic in robotics literature over the past three
decades that explicitly addresses the mapping problem, and there
has been a plethora of publications that proposed very efficient
solutions [1–7]. These solutions are generally based on different
assumptions about the SLAM problem, and they handle measure-
ment uncertainties from noisy sensors using either (i) probabilistic
approaches, or (ii) set-membership approaches and related inter-
val methods.

The probabilistic methods for robotic mapping rely on study-
ing the propagation of probabilistic distributions of the sensor
noise and the unknown parameters, e.g., robot pose and land-
mark locations. These methods include: Extended Kalman Filter
(EKF) SLAM [4], Factored Solution to the SLAM (FastSLAM) [6],
and Graph SLAM [8]. In EKF SLAM, the state of the system corre-
sponds to the joint distribution of robot pose and all landmarks
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in the environment at any timestep, and it is represented by a
Gaussian distribution. The advantages of this approach lie in the
fact that Kalman filter is quite simple to implement, and, like any
Bayes filter, it is a recursive approach which is useful for online
mapping applications. However, optimality and convergence of
this approach are not guaranteed for nonlinear or non-Gaussian
models [9] despite its good performance in practice.

SLAM problem has an interesting property where knowing the
exact robot path makes landmark estimation statistically inde-
pendent. Such property is exploited in FastSLAM [6] where Rao-
Blackwellised particle filtering [10] is used to factor the SLAM
problem into (i) localization problem that uses a Monte Carlo
method or particle filter [11], and (ii) mapping problem that uses
EKF. This approach is superior to EKF SLAM in terms of complexity
and robustness to data association errors. But since EKF is used,
convergence is not guaranteed for the nonlinear or non-Gaussian
models [12,2].

Graph-based SLAM are several approaches that attempt to solve
SLAM usingmaximum likelihood estimation (MLE) of the map given
all the measurements in the context of graphical network. Lu-and-
Milios algorithm [13] and GraphSLAM [8] are examples of such
approaches to handle the data association problem with measure-
ments from laser scanners.

Probabilistic SLAM methods have been used successfully in
many practical applications and several hybrid approaches have
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been proposed to get the best qualities of each single method.
However, they all depend on the fact that the noise can be de-
scribed by some distribution with known probability density func-
tion.Moreover, convergence ofmapsusing these techniques is only
guaranteed in very special cases with strong assumptions such as
Gaussian linearmodels. Most of real robotic systems are nonlinear,
and many sensors do not possess Gaussian noise model or their
distributions are simply not available. Hence, using probabilistic
methods can lead to an approximate solution, i.e., not guaranteed.

Interval methods [14–16], on the other hand, do not require
any prior knowledge about the probability distribution of un-
certainties, except that they are bounded by some known real
intervals. Thesemethods have shown promising results in the field
of parameter estimation [17,18], and they found their way to the
mobile robotic applications, either in low-level control or high-
level control. In low-level control, such as in robot locomotion,
interval methods were used to study the stability of complex non-
linear robotic systems [19], to rigorously compute capture domains
as defined in [20,21], or to synthesize nonlinear controllers as
introduced in [22]. In terms of high-level control, interval methods
were used for robot localization as presented in [23,14,24] where
nonlinear robot models were used, such as motion model and
observationmodel. In these applications, laser scanners were used
with the assumption that the noise is bounded.

These methods use the set of measurements and construct a
constraint satisfaction problem (CSP) [25,14] based on the robotmo-
tion and observationmodels. Then, a guided search is performed to
find the smallest possible domain of the robot pose. Gning et al. de-
veloped box particle filter [26,27] that combines the advantages of
interval methods and probabilistic particle filters as an attempt to
reduce the number of required particles representing the posterior
distribution of Bayes filter. This box particle filter approach is ap-
plied for tracking purposes and mobile robot localization. Another
workwhich combines both probabilistic and intervalmethodswas
conducted in [28] to solve mobile robot localization problems.

In terms of robotic mapping, there have been several publica-
tions [3,29–31] that study mapping using interval methods, most
of them use an approach similar to graph-based SLAM, but in the
context of a constraint satisfaction problemwith interval domains.
For example, Jaulin in [3] used an underwater robot with sonar,
and Vincke et al. in [29] used a ground robot with depth sensors to
solve the SLAM problem with nonlinear models. By keeping track
of all observations and control inputs, these approaches generate a
set of constraints to be satisfied with respect to the robot pose and
the landmark positions using constraints propagation. Moreover,
interval range-only SLAM is introduced in [30] where a range sen-
sor, such as sonar or lidar, is employed without the bearing infor-
mation. This approach is applied to the SLAM problem in amanner
similar to occupancy grid, however, themap resolution varies from
one region to another depending on the size of obstacles and their
geometric shapes. Bethencourt and Jaulin used a Kinect sensor and
interval methods for the purpose of 3-D reconstruction using point
features in [31], and they employed an IMU to estimate the sensor
motion and assumed bounded noise. In the presence of faulty sen-
sors or measurement outliers, applying interval methods directly
will result in empty sets. In probabilistic methods, RANSAC [32]
is an efficient approach that removes such outliers. The interval
methods counterpart of RANSAC is q-relaxed intersection which is
proven in to be evaluated in polynomial time as shown in [33]. Sli-
wka et al. [34] employed q-relaxed intersection to robustly localize
an underwater robot using interval methods. Moreover, q-relaxed
intersection was also used by De Freitas et al. [35] along with box
particle filter [26] for robust tracking of a large number of objects
simultaneously and in the presence of clutter measurements and
possible outliers. This approach is beneficial for crowd tracking and
monitoring applications.

The major disadvantage of interval methods is scalability with
respect to the number of unknown variables. Jaulin et al. showed
in [14] that using contractors [36] for solving CSPs can lead to poly-
nomial time complexity in terms of evaluation. Such processing
time, however,may not be sufficient for real time applications such
as SLAMwhere the number of variables increases when new land-
marks are observed. Thus, many interval methods are evaluated
offline to obtain optimal solutions, though online applications are
possible where suboptimal solutions are obtained [14]. Nonethe-
less, the results evaluated using interval methods guarantee that
all possible solutions are found in terms of closed sets, unlike
probabilisticMonte Carlomethods that return a finite subset of the
solution [14].

Our contributions in this paper focus on the convergence of
robotic mapping. More specifically, we aim to: (i) develop a new
theory about compact sets in the context of real analysis, and use
that to specify soft conditions that guarantee the convergence of
robotic mapping for the case of nonlinear non-Gaussian models.
These conditions may require the presence of some anchoring
landmarks with known locations; (ii) introduce i-SLAM and em-
ploy interval methods to demonstrate the map convergence using
the observation model only, and assuming that the data associ-
ation problem is solved; and (iii) provide a comparison between
probabilistic methods and interval methods with regard to robotic
mapping, and demonstrate the performance of each using simu-
lated data. Moreover, the proposed approach does not consider the
robot motion model, though it can be incorporated in the problem
formulation.

The paper is organized as follows: Section 2 introduces interval
analysis and interval computations, followed by an illustration
of efficient interval methods for solving generic constraint sat-
isfaction problems. After that, i-SLAM is introduced in Section 3
where the roboticmapping problem is defined in the framework of
constraint satisfaction problems, and interval methods algorithms
are used to obtain themap estimate. Section 4 presents theoretical
background that highlights convergence conditions for the map-
ping problem in the context of real analysis. Then, simulation and
results are presented in Section 5 with a mobile robot moving in
2-D environment and using only measurement model. Also, this
section presents a comparison between probabilistic mapping and
interval mapping, and it highlights the advantages of each method
in terms of performance and output quality. Finally, Section 6 con-
cludes the paper with a discussion about the results, and Section 7
presents several areas of improvements that can be addressed in
the future.

2. Interval analysis and methods

2.1. Real interval arithmetic and functions

A real interval is a connected, closed set inR, and it is denoted by
[x] =

[
x, x
]
. The two numbers x, x ∈ R represent the lower bound

and upper bound of [x], respectively. Basic arithmetic operations
can be applied to intervals. Let ⋄ be a binary arithmetic operation,
i.e., ⋄ ∈ {+,−, ∗, /}, and [x], [y] are real intervals, then, interval
operation is defined as follows:

[x] ⋄ [y] = [{x ⋄ y ∈ R | x ∈ [x] , y ∈ [y]}] , (1)

where [ · ] is the hull operator [14]. Similarly, elementary func-
tions can be extended to intervals. Consider a function f : R→ R,
its interval counterpart is defined as:

[f ] ([x]) = [R ∩ {f (x) | x ∈ [x]}] . (2)

Intervals can be extended to higher dimensions by introducing the
vector of intervals, also called a box, and it is denoted by [x]. A box
is a compact subset of Rn that is defined as the Cartesian product
of n closed intervals such that [x] = [x1]× [x2]×· · ·× [xn]. The set
of all n-dimensional boxes is denoted by IRn [14].
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