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h i g h l i g h t s

• Robot pose is controlled while addressing a compliant behaviour within the null space.
• Singularity-free representations for the orientation part are employed.
• A dynamic controller is designed without the need of any exteroceptive sensors.
• Theoretical proofs and experiments are presented to validate the approach.
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a b s t r a c t

This paper tackles the problem of controlling the position and orientation, expressed in a singularity-
free representation form, of the end-effector of a redundant robot, while addressing an active compliant
behaviour within the null-space. Themanuscript extends the work in Sadeghian et al. (2014) by explicitly
addressing the orientation part. In order to successfully accomplish the task, a dynamic controller is
designed without need of any exteroceptive sensors information. A rigorous stability analysis is provided
to confirm the developed theory. Experiments are finally carried out to bolster the performance of the
proposed approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The new generation of robots should have the intrinsic ability
to share the operational environment with humans. Often physical
interaction occurs, and this may happen at any part of the manip-
ulator body. The contact can be both intentional (i.e., required for
collaborative tasks) or unintentional (i.e., unexpected collisions).
To guarantee a safe robot reaction to physical interaction, suitable
control strategies must be adopted, which may require the mea-
surement or the estimate of the exchanged forces and moments,
as well as the effective robot inertia, the relative velocity and the
distance between the robot and the human [1].

One solution could be to cover the whole manipulator body
with a sensitive skin [2] to obtain a direct measure of the ex-
changed force and moment as well as of the contact point. Nev-
ertheless, this solution seems to be rather far to be applied at the
moment. In case it is not possible to cover the arm with sensors,
an alternative solution is to estimate the exchanged forces and
moments on the basis of the available measures of joints position
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and/or torque, by using suitable observers [3] or neural interpola-
tors [4]. This approach is adopted in [5] for collision detection and
safe reaction.

For safety reasons, in order to keep limited the exchanged
forces and moments, the manipulator is often requested to be
compliant in response to physical interaction. From a mechanical
point of view, such compliance can be passively achieved by using
elastic decouplings between the actuators and the commanded
links through fixed or variable joint stiffness [6]. On the other hand,
active compliance relies on the control action, and impedance
control is thewidest adopted approach to actively control the robot
compliance [7–10]. If the external interaction is likely to occur
only on some parts of the manipulator (i.e., the end-effector), a
force/torque sensor helps in fully control the desired interaction
with the environment via software. In case of redundant robots,
a compliant behaviour can be imposed so as not to interfere with
the main task [9,11], an thus the so called null-space compliance
or impedance is obtained. This is particularly useful in those situ-
ations where it is desirable to have the control of the interaction
within the joint space. In such cases, the external forces affect-
ing the main task must be suitably measured and/or estimated
to allow an impedance behaviour as a secondary task without
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compromising the main one. Null-space impedance can be also
achieved in multi-priority framework at acceleration level [11],
or employing both a task error-based disturbance observer and
a momentum-based observer [12]. A particular feature of the al-
gorithm developed in [12] is that it allows to fully compensate
the error in the task space caused by the physical interaction.
Of course, this is possible only if the robot possesses a sufficient
number of redundant degrees of freedom. In some applications,
it is advisable to select a minimal number of task variables to be
kept unaffected in the case of physical interaction. Moreover, the
task variables are usually a subset of those representing the end-
effector position and orientation. For example, if a robot waiter is
carrying a trail with some food, when somebody pushes the arm,
it is important to avoid the change of orientation of the trail, or, at
least, any roll and pitchmotions. Other approacheswith redundant
robots do not instead explicitly require the use of an active or
passive compliance, but the manipulator’s posture is optimized to
minimize the impact/external wrench while carrying out the main
task [13].

This work further develops what presented in [12], where the
algorithm is presented with reference to generic task variables. In
this paper, instead, the task variables are explicitly the position
and orientation of the end effector. The orientation is considered
in a non-minimal singularity free representation, e.g., axis-angle,
unit quaternion. Notice that using one of these two orientation
representations, the theoretical framework within [12] fails since
the closed-loop equations related to the angular part are not in
a linear form. As in [12], the pursued goal is to control the robot
manipulator in the Cartesian space while achieving an active com-
pliant behaviour in the null-space. A dynamic term filtering both
the effects of velocity and external forces is added to the controller
to solve the task. A rigorous stability analysis is also provided.
Notice that neither joint torque sensors nor force/torque sensors
at the end-effector are required to accomplish the sought job.

The outline of the manuscript is as follows. Section 2 presents
themathematical backgroundnecessary to introduce the proposed
control in Section 3. The stability proof of the closed-loop system
is carried out in Section 4. Experiments confirming the provided
theory are provided in Section 5. Section 6 finally concludes the
manuscript.

2. Background

The equations ofmotion of a n joints robot arm can bewritten in
the joint space according to the following compact matrix form [7]

B(q)q̈ + C (q, q̇)q̇ + g(q) = τ − τext , (1)

where q ∈ Rn, q̇ ∈ Rn and q̈ ∈ Rn are the position, velocity and
acceleration joint vectors, respectively; B(q) ∈ Rn×n is the inertia
matrix in the joint space; C (q, q̇) ∈ Rn×n is the matrix collecting
Coriolis and centrifugal effects; g(q) ∈ Rn is the gravity vector
term; τ ∈ Rn is the control torques vector; τext ∈ Rn is the vector
representing the external torques acting on the joints.

Notice that τext is a disturbance representing both joints torque
due to the physical interaction with the environment and unmod-
elled effects. In this paper, it is assumed that the manipulator
is equipped neither with torque sensors in the joints, nor with
force/torque sensors. Therefore, it is not possible to measure τext .

Considering a redundant manipulator (n > 6, in general), a
joint space impedance control can be achieved in the null-space of
the Cartesian task, or using a multi-priority redundancy resolution
scheme [14]. Let Σi and Σe be the inertial and end-effector refer-
ence frames, respectively. Denote with pe ∈ R3 and Re ∈ SO(3) the
position and the orientation, respectively, ofΣe inΣi. Consider the
vector υ =

[
ṗT
e ωT

e

]T
∈ R6, where ωe ∈ R3 is the angular velocity

of Σe with respect to Σi. The following relation between the joints
velocity and the end-effector velocity holds

υ = J (q)q̇, (2)

where J (q) ∈ R6×n is the so-called geometric Jacobian of the
robot arm [7]. A general inverse solution to (2) is given by q̇ =

J (q)†υ + N (q)q̇N , where J (q)† ∈ Rn×6 is any generalized inverse
of J (q), and N ∈ Rn×n is the matrix projecting the vector q̇N ∈

Rn to the null-space of J (q). The vector q̇N represents internal
redundancy motions of the manipulator joints that do not affect
the end-effector velocity υ. It is assumed that the robot does not
pass close to singular joint configurations, i.e. J (q) is full rank.

In order to better characterize the internal motions of a redun-
dant manipulator, one solution is to use the so-called joint space
decompositionmethod [9]. In this case the Cartesian coordinates are
augmented by adding r = n − 6 auxiliary variables λ ∈ Rr to the
end-effector velocity υ. These auxiliary variables are defined as

q̇ = Nq̇N = Z(q)λ, (3)

where Z(q) ∈ Rn×r is such that J (q)Z(q) = O6×r , where Oa×b ∈

Ra×b is a zero matrix of proper dimensions. Therefore Z(q) is
a matrix spanning the null-space of J (q). Having in mind (3),
a convenient choice for λ is given by the left inertia-weighted
generalized inverse of Z(q) [15], such that λ = Z(q)#q̇, with

Z(q)# =
(
Z(q)TB(q)Z(q)

)−1Z(q)TB(q). By this choice, it is possible
to extend (2) through the following form

ξ =

[
υ
λ

]
= JE(q)q̇ =

[
J (q)
Z(q)#

]
q̇, (4)

where

JE(q)−1
=

[
J (q)# Z(q)

]
, (5)

is non-singular for full rank matrix J (q), and J (q)# = B(q)−1J (q)T(
J (q)B(q)−1J (q)T

)−1 is the so-called dynamically consistent gen-
eralized inverse Jacobian [16], which plays a key role in null-
space dynamics [9]. Therefore, the following decompositions for
the joints velocity and acceleration hold

q̇ = J (q)#υ + Z(q)λ, (6)

q̈ = J−1
E (q)ξ̇ + J̇−1

E (q)ξ. (7)

The complete dynamic model in both the task and the null-space
can be found in [9]: the related derivation is here avoided.

The control objective is to satisfy a task in the Cartesian space
while achieving a compliant behaviour for the manipulator, with-
out affecting the main task. This will be also possible thanks to the
aforementioned choice of considering geometric consistent gen-
eralized inverse matrices whose metric is induced by the inertia
matrix. The following controller is then consider for the dynamic
system (1)

τ = B(q)uq + C (q, q̇)q̇ + g(q), (8)

where uq ∈ Rn is a new virtual control input having the dimen-
sion of joints acceleration. The closed-loop dynamics assume the
following form

q̈ = uq − B(q)−1τext . (9)

Having in mind (7) and (9), the following command acceleration
can be considered [12]

uq = J (q)#
(
uυ − J̇ (q)q̇

)
+ Z(q)

(
uλ − Ż(q)#q̇

)
, (10)

where uυ ∈ R6 and uλ ∈ Rr are new virtual control inputs
having the dimension of Cartesian and null-space accelerations,
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