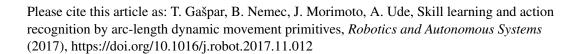
Accepted Manuscript

Skill learning and action recognition by arc-length dynamic movement primitives

Timotej Gašpar, Bojan Nemec, Jun Morimoto, Aleš Ude


PII: S0921-8890(17)30269-5

DOI: https://doi.org/10.1016/j.robot.2017.11.012

Reference: ROBOT 2955

To appear in: Robotics and Autonomous Systems

Received date: 20 April 2017 Revised date: 12 October 2017 Accepted date: 24 November 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Skill learning and action recognition by arc-length dynamic movement primitives

Timotej Gašpar^{a,b}, Bojan Nemec^a, Jun Morimoto^b, and Aleš Ude^{a,b}

^a Humanoid and Cognitive Robotics Lab,
Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute
Jamova cesta 39, 1000 Ljubljana, Slovenia

^b Department of Brain Robot Interface, ATR Computational Neuroscience Labs
2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan
e-mail: {timotej.gaspar, bojan.nemec, ales.ude}@ijs.si, xmorimo@atr.jp

Abstract

Effective robot programming by demonstration requires the availability of multiple demonstrations to learn about all relevant aspects of the demonstrated skill or task. Typically, a human teacher must demonstrate several variants of the desired task to generate a sufficient amount of data to reliably learn it. Here a problem often arises that there is a large variability in the speed of execution across human demonstrations. This can cause problems when multiple demonstrations are compared to extract the relevant information for learning. In this paper we propose an extension of dynamic movement primitives called *arc-length dynamic movement primitives*, where spatial and temporal components of motion are well separated. We show theoretically and experimentally that the proposed representation can be effectively applied for robot skill learning and action recognition even when there are large variations in the speed of demonstrated movements.

Keywords: programming by demonstration, skill learning, action recognition, dynamic movement primitives

Download English Version:

https://daneshyari.com/en/article/6867364

Download Persian Version:

https://daneshyari.com/article/6867364

<u>Daneshyari.com</u>